• 제목/요약/키워드: Capillary Pipe

검색결과 87건 처리시간 0.032초

Non-inverted Meniscus식 모세관 구조물을 이용한 소형 루프히트파이프에 관한 실험적 연구 (A Study on the Miniature Loop Heat Pipe with Non-inverted Meniscus type Capillary Structure)

  • 정원복;박수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2142-2147
    • /
    • 2007
  • Experimental study was conducted to evaluate the performance of a miniature loop heat pipe (MLHP) with non-inverted meniscus type capillary structure. All parts of MLHP in this study were made of copper including the capillary structure and the distilled water was used as a working fluid of MLHP. The outer diameter of evaporator was 9 mm and its length was 119 mm. The effective pore size of the capillary structure was 30 micron and its porosity was 60%. The vapor transport line, the liquid transport line and the condenser were consisted of single 4.0 mm copper tube. The distance between the evaporator and the condenser region was 200 mm and the length of the loop was 969 mm. This MLHP was operated successfully at any orientation but the gravity highly influenced the thermal performance of the MLHP. The maximum thermal load was 130 watts at the bottom heat mode and the 20 watts at the top heat mode.

  • PDF

Sintered Metal Wicks Development for the High Performance Loop Heat Pipe(LHP) Systems

  • 최지훈;성병호;유정현;서민환;김철주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2136-2141
    • /
    • 2007
  • The Loop Heat Pipe(LHP) system uses capillary forces so as to pump the working fluid from heat acquisition to heat rejecting systems. The performance of the LHP systems depends mainly upon the operating performance of the wick structure. The capillary pressure increases with decreasing the pore size of the wick structure. By the way, the wick structure's permeability decreases with decreasing the pore size and the porosity. To obtain an ideal wick, the wick structure should possess several characteristics such as the small pore size, high porosity and chemical compatibility with working fluid. Sintered metal wicks have been mainly used as the capillary wick structure mounted in LHP because of the fact that the sintered metal wick has some advantages like convenient selection of wick material, smaller pore size and so on as well as high reliability. In this study, sintered metal wicks were developed to meet required several parameters to design the high performance LHP systems for obtaining even more effective cooling technologies.

  • PDF

Experimental Investigations on the Temperature Characteristics of Oscillating Heat Pipe with Various Filling Ratio

  • Jeong, Hyo-Min;Chung, Han-Shik;Lee, Kwang-Sung;Tanshen, Md.Riyad;Lee, Tae-Jin;Lee, Sin-Il
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.47-53
    • /
    • 2013
  • The article focuses on the Temperature characteristics inside single loop oscillating heat pipe (OHPs). In this paper, heat pipe is experimentally studied thereby providing vital information on the parameter dependency of their thermal performance. The impact depiction has been done for the variation of tube model of the device. OHPs are made of copper capillary tubes of outer diameter 6.25 mm, inner diameter 4 mm heated by constant temperature water bath cooled by ambient temperature. Using four types of OHPs of copper capillary tubes length of 1500mm and HP length 650mm inside tubes working fluid is R-22 Pressure 8 bar and mass 34g,32g,28g,16g. The results indicate a strong influence of filling ratio on the performance.

그루브형 히트파이프에서 작동유체량이 히트파이프 성능에 미치는 영향 (Effects of the Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axial Grooves)

  • 서정세;박영준
    • 설비공학논문집
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2003
  • An analytical and experimental study of the thermal performance of axial heat pipe with axial groove is conducted to determine the optimal mass of working fluid for the maximum heat transport capacity of heat pipe with axial grooves. Generally, the mass of working fluid has been fully charged by considering only a geometrical shape of axial grooves embedded in a heat pipe. When the heat pipe is operated in a steady state, the meniscus re-cession phenomena of working fluid is occurred in the evaporator region. In this work, the optimal mass of working fluid was obtained from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the mass of working fluid within a heat pipe, and presented for the maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal mass of working fluid were compared with those of the experimental mass of working fluid.

나노유체 특성에 따른 히트파이프 성능해석 (Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties)

  • 임승민
    • 대한기계학회논문집B
    • /
    • 제39권7호
    • /
    • pp.599-607
    • /
    • 2015
  • 본 연구에서는 나노유체의 유동학 특성을 반영한 히트파이프 열적특성을 연구하였다. $Al_2O_3$와 CuO 나노입자를 적용한 나노유체를 작동유체로 하여 나노입자 부피비와 응집도에 대한 히트파이프 성능을 확인하였다. 나노입자의 부피비와 응집도가 증가할수록 점성과 열전도도는 증가하는 것으로 나타났으며 두 인자는 히트파이프 성능에 영향을 주었다. 나노입자응집이 없는 경우에는 나노입자의 부피비 증가가 모세관압력한계 성능을 향상시켰지만 응집도가 증가하면 입자부피비가 증가해도 모세관압력한계가 감소했다. 그리고 나노입자의 열전도도, 부피비, 응집도에 대한 히트파이프 열저항을 분석하였다. 히트파이프의 투과율이 높을수록 최대열수송량은 입자부피비에 미치는 영향이 컸으며 3차원 그래프를 통해 윅 특성에 대한 최적화된 나노입자부피비를 확인하였다.

Effects of the Charging Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axially Grooved Wick

  • Suh, Jeong-Se;Kang, Chang-Ho;Hong, Jung-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권2호
    • /
    • pp.79-86
    • /
    • 2004
  • An analytical and experimental study has been conducted to determine the optimal charging mass of working fluid for the maximum heat transport capacity of heat pipe with axially grooved wick. When the heat pipe is operated in a steady state, the liquid-vapor meniscus recession of working fluid to the bottom of groove is occurred in the evaporator region. In this work, the optimal charging mass of working fluid was obtained by considering the meniscus recession from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the charging mass of working fluid within a heat pipe, and presented for the trend of maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal charging mass of working fluid were compared with those from the experiment, both of which were in good agreement with each other.

소결윅 특성이 히트파이프의 열수송 한계에 미치는 영향 (Effects of the Sintered Wick Characteristics on the Heat Transport Limitations of the Heat Pipes)

  • 김근배;김유
    • 한국군사과학기술학회지
    • /
    • 제9권2호
    • /
    • pp.127-135
    • /
    • 2006
  • Experimental studies of the cylindrical sintered-copper wick heat pipes were carried out to investigate the capillary heat transfer characteristics. Six models of the sintered-copper wick heat pipes were manufactured and tested to evaluate the heat transport limitations and the thermal characteristics. Also the performance of the heat pipes was analyzed theoretically and compared with the test results. The heat pipe models are divided into two sintered-wick groups and the nominal particle sizes are $180{\mu}m$(wick #1) and $200{\mu}m$(wick #2) respectively The experimental results showed that, the porosity of wick #1 was higher than that of wick #2, and also the wick #1 was generally superior than the wick #2 for the heat transport capability. The maximum heat transport rates were increased as the wick thicknesses and the vapor temperatures were increased.

Influence of Working Fluids to Heat Transfer Characteristics of Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery

  • Lee, Wook-Hyun;Im, Yong-Bin;Kim, Ju-Won;Kim, Jeung-Hoon;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권3호
    • /
    • pp.27-35
    • /
    • 2001
  • Heat transfer characteristics of a heat exchanged for low temperature waste heat recovery using oscillating capillary tube heat pipe (OCHP) were evaluated against the charging ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working a 2.6mm in outside diameter, 1.44mm in inside diameter with 101m length and 140 turns. Charging ratio of working fluid was 40% and 50%. water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and 9~27 $4kg/m^2s$, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-142b and R-290 and it was proportional to Figure of Merit for thermosyphon. As a result, it was thought that R-22 was the most reasonable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe

  • Bui, Ngoc-Hung;Kim, Jong-Soo;Jung, Hyun-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2003
  • The examinations of the operating mechanism of an oscillating capillary tube heat pipe (OCHP) using the visualization method revealed that the working fluid in the OCHP oscillated to the axial direction by the contraction and expansion of vapor plugs. The contraction and expansion were due to the formation and extinction of bubbles in the evaporating and condensing part, respectively The actual physical mechanism, whereby the heat which was transferred in such an OCHP was complex and not well understood. In this study, a theoretical model of the OCHP was developed to model the oscillating motion of working fluid in the OCHP. The differential equations of two-phase flow were applied and simultaneous non-linear partial differential equations were solved. From the analysis of the numerical results, it was found that the oscillating motion Of working fluid in the OCHP was affected by the operation and design conditions such as the heat flux, the charging ratio of working fluid and the hydraulic diameter of flow channel. The simulation results showed that the proposed model and solution could be used for estimating the operating mechanism in the OCHP.

Safety Design of the Loop Heat Pipe (LHP) by the Hazard Analysis

  • Tanaka, Kiyoshi
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.54-57
    • /
    • 2010
  • The LHP uses the capillary head instead of the mechanical pump to transfer the fluid. It does not have any moving parts and transfer the fluid by the capillary head between the vapor and liquid interface of the wick like a heat pipe (HP). Moreover, vapor and liquid flows in the same direction. It can reduce the loss of the pressure in the wick (very short wick in the evaporator) and can transfer large heat over long distance compared with HP. It is necessary that we do the hazard analysis that is a part of the safety design, for the benefit of eliminating and inhibit the hazard. In this paper, we describe the hazard analysis of LHP.