• Title/Summary/Keyword: Capacity calculation

Search Result 740, Processing Time 0.028 seconds

The Fault Current Procedure for the Interrupting Capacity Calculation of the Circuit Breaker (차단기 차단용량 산정을 위한 고장계산 절차)

  • Park, H.K.;Kim, K.J.;Park, C.W.;Shin, M.C.;Rhim, C.H.;Ryu, J.H.;Yoon, Y.B.;Cha, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.147-150
    • /
    • 2003
  • Power demands are increased because of the growth of the economy and the improvement of a given condition life. For this reason, the fault current of the power system is largely increased and the fault current procedure for the proper interrupting capacity calculation of the existing or the new circuit breaker is essential. This paper is basis on collection of the case of foregin countries. It presented the new procedure of the fault current for the interrupting capacity of the circuit breaker. This procedure is applied to the future power system and calculates the fault current.

  • PDF

Current Distribution and Loss Calculation of a Multi-layer HTS Transmission Cable (다층 고온 초전도케이블에서의 전류분류 및 손실 계산)

  • 이승욱;차귀수;이지광;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.29-32
    • /
    • 2000
  • Superconducting transmission cable is one of interesting part in power application using high temperature super-conducting wire as transformance. One important parameter in HTS cable design is transport current distribution because it is related with current transmission capacity and loss. In this paper, we present the calculation theory of current distribution for multi-layer cable using the electric circuit model and in example, calculation results of current distribution and AC loss in each layer of 4-layer HTS transmission cable.

  • PDF

A Study on Minimum Headway Calculation (운전시격의 계산 알고리즘에 관한 연구)

  • 이종우;정의진;황종규;정철범
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.308-315
    • /
    • 2000
  • Headway calculation is a important mean to evaluate railway system performance. A accurate headway calculation can be needed to headway reducing being achieved line capacity increasing by regulating signals spacing without any line construction. This paper introduced the theories and algorithms of calculating headways on wayside, multi step, one step braking and moving block signalling systems and showed some results of headways.

  • PDF

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

Calculation of CBM, TRM and ATC using Quadratic Function Approximation (이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정)

  • 이효상;신상헌;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.

A Comparative Study on Delay Calculation Method of Airport Capacity (공항 수용량의 지연시간 산출방식 비교 연구)

  • Lee, HyoJu;Kim, DoHyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.2
    • /
    • pp.47-52
    • /
    • 2020
  • Air transport demand is on a sharp rise due to growth in the aviation market. To prepare for this rapidly growing demand for aviation, airport operators are interested in the processing airport capacity. Airport throughput is determined to be the smallest of the facility capacities that make up the airport, but it is customary to determine the cost and time consuming runway capacity as airport capacity. Previous studies have shown that while recent studies have been conducted on airport capacity, there is little research on the criteria for determining capacity. In this study, we would like to determine the extent to which airport capacity is affected by the airport's operating hours and the resulting delays.

A Study on the Service Reliability and Power Quality Improvement Using Hybrid Type Capacitor Bank (하이브리드 타입 커패시터 뱅크를 이용한 공급신뢰도 및 전력품질 개선 방안 연구)

  • Lee, Hansang;Yoon, Dong-Hee
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.313-319
    • /
    • 2014
  • The objectives of power system operations are to preserve system stability and reliability as well as to supply proper electric power. For an activation of these objectives, voltage and reactive power should be considered. There are a number of types about reactive power sources, and an insertion of shunt capacitor banks are one of the method to support bus voltage adjacent. This paper includes the design procedure to determine the hybrid type capacitor bank configurations on power system to improve stability and reliability. This procedure includes the capacitor bank capacity calculation, reactor type selection, and reactor capacity calculation. The total capacity calculation of capacitor bank is based on the reactive power margin which is calculated through system studies such as, contingency analysis and Q-V analysis. In the second step, the reactor type and its capacity can be determined through the harmonic analysis. This paper shows that the harmonics are decreased by the proposed hybrid type capacitor bank, especially 5th and 7th harmonics.

Comparison of Bearing Capacity Calculation Methods for Shallow Foundations (얕은기초의 지지력 산정방법에 관한 비교 연구)

  • 천병식;이정훈;김수봉
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.455-462
    • /
    • 2003
  • The current practice of estimating bearing capacity usually employs the conventional bearing capacity formula originally developed for strip footings under vertical central loading, In order account for the effect of footing shape and eccentricity and inclination of loads, correction factors are introduced in the formula, which are derived based on a number of small-scale model test observations. In this paper, comparison of several formulations of bearing capacity factors, as well as values of these factors, are presented. And the conventional bearing capacity equations are compared with some of other failure loci proposed for cohesive soil. Also, the bearing capacity of shallow foundation estimated by the conventional bearing capacity equations are compared with the experimental load test results.

  • PDF

Calculation Correctio Factor of Bridge Capacity using Fuzzy Sets Theory (퍼지를 이용한 교량 안전도평가의 보정계수 산정)

  • 조원신;박기태;김상효;황학주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.240-244
    • /
    • 1992
  • The values of a linguistic variable are words, phrases, or sentences in a given language. For example, structural damage can be considered as linguistic variable with values such a 'severely damaged', 'moderately damaged', which are meaningful classifications but not clearly defined, This paper is to evaluate reasonably the correction factor of bridge capacity with the aid of fuzzy sets theory. By using the above mentioned fuzzy measure, the concept of fuzzy integral and linear membership function can be defined. It is concluded that the fuzzy sets theory cam be applied to determine reasonably the correction factor of bridge capacity.

  • PDF

A Study on the Limit Capacity Calculation for Thermal plant based on Air Pollution Control (대기오염에 따른 화력발전소의 한계용량산전에 관한 연구)

  • Yim Han Suck
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.95-98
    • /
    • 1977
  • Commercially available fuel oil for power plant contains relatively much sulphur, which means accordingly high content sulphur deoxide in exhaust gas. Sulphur deoxide has been identified as the worst-pollutant caused by thermal power generation. This paper primarily deals with the stack gas diffusion effects of various parameters, namely vertical stability, wind velocity, exhaust gas velocity, stack height, etc., on the ground concentration. thereof the relation between stack height and maximum plant capacity is analyzed from the standpoint of air pollution prevention. The limit capacity is calculated by means of mean concentration introducing Mead and Lowry coefficient respectively.

  • PDF