• Title/Summary/Keyword: Capacity Design

Search Result 5,624, Processing Time 0.038 seconds

A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing (스파이럴 그루브 형상의 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구)

  • 강지훈;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.257-262
    • /
    • 2001
  • A numerical analysis is undertaken to show tile influence of bearing design parameters on tile load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, arid the seal ratio.

  • PDF

Capacity Design of Lithium Ion Battery Based on the Characteristics of Materials (${\cdot}$부극 재료의 특성에 따른 리튬이온전지의 용량설계)

  • Moon Seong-In;Doh Chil-Hoon;Yun Seong-Kyu;Yum Duk-Hyung
    • 한국전기화학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.7-27
    • /
    • 1998
  • In order to design capacity of lithium ion battery, some calculations were carried out based on the characteristics of materials by the given battery shape and dimension. The principle of design was built by the interpretation of the correlation of material, electrochemical and battery factors. Parameters of materials are fundamental physical properties of constituent such as cathode. separator, anode, current collectors and electrolyte. Electrochemical factor includes potential pattern as a function of specific capacity, specific discharge capacity(or initial irreversible specific capacity or Ah efficiency) as a function of specific charge capacity and material balancing. Parameters of battery are dimension, construction hardware and performance. Battery capacity was simulated for a lithium cobalt dioxide as cathode and a hard carbon as anode to achieve 1100 mAh for the charge limit voltage of 4.2V, the weight ratio(+/-) of 2.4 and ICR18650. A fabricated test cell (ICR18650) which have weight ratio(+/-) of 2.4 discharged to 1093 mAh for the charge limit voltage of 4.2V. The sequential discharge capacity show good correspondence with designed capacity.

  • PDF

A Study on the Seisemic Performance Method for R.C bridge by using the Finite Element Analysis Program (유한요소해석 프로그램를 이용한 R.C교각의 내진성능 평가 기법 연구)

  • Park, Yeoun-Soo;Choi, Sun-Min;Lee, Byung-Geun;Seo, Byung-Chul;Park, Sun-Joon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-306
    • /
    • 2008
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-vased analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result, capacity spectrum method could realistically evaluate the non-elastic behavior of structures easilly and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structures and a verification of design for capacity target of the structure. We propose the seisemic performance method by using the Finite Element Analysis Program.

  • PDF

Design of Lateral Load Resisting System using Nonlinear Static Analysis (비선형 정적해석을 통한 횡저항 시스템의 보유성능 평가 및 설계방안 연구)

  • Song, Jin-Gyu;Kim, Geon-Woo;Jung, Sung-Jin;Song, Young-Hoon;Lee, Seung-Chang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.9-16
    • /
    • 2006
  • The design practice of the lateral resisting system has been traditionally dependent on the experience and know-how of a structural engineer. And the method to reflect the evaluation results of building's capacity on design process doesn't exist. The proposal of a rational design of the lateral load resisting system is based on the available full capacity $(R_{ac})$ of a building and the minimum required capacity $(R_{code})$ suggested in the code. This study suggests thai nonlinear static analysis, which is the estimation of the lateral capacity with the pushover analysis, be included in the existing design procedure of the structure. After finishing the basic structural design, the lateral resisting capacity ol a building is estimated. At the phase of nonlinear static analysis, pushover analysis is peformed to define the fully yielded baseshear $(V_Y)$. When the design wind baseshear $(V_{wind})$ is bigger than the design seismic baseshear $(V_D)$, the value is checked to determine whether or not it is smaller than the $V_Y$. After confirming that it is smaller, the $R_{ac}$ of the structure is computed. If the $V_D$ is bigger at first, only the $R_{ac}$ is computed. When the value of the estimation shows remarkable differences with the $R_{code}$, repetition of the design modification is needed for those approximate to the $R_{code}$. Application of the proposed design procedure to 2-D steel braced RC buildings has proven to be efficient.

Re-evaluated Overstrength Factor for Capacity Design of Reinforced Concrete Bridge Columns (철근콘크리트 기둥의 성능설계를 위한 모멘트 초과강도계수에 관한 연구)

  • Lee, Jae-Hoon;Choi, Jin-Ho;Ko, Seong-Hyun;Kwon, Soon-Hong
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.308-315
    • /
    • 2005
  • The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It is intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. For bridge systems, this means it is necessary to assess the overstrength capacity of columns prior to proceeding with the design of foundation and superstructure. The objective of this paper is to develop a capacity design approach that applies an overstrength factor for determination of possible maximum shear force in the plastic hinge zone of reinforced concrete bridge columns. In order to estimate and determine overstrength factor, material strength was developed to investigate for actual material strength total 3,407 steel and 5,405 concrete by domestic product. Based on actual material strength, this paper was conducted on moment overstrength factors using moment-curvature analysis program. And also design recommendations for capacity design are presented to revise the annual report, KEERC 2002.

  • PDF

Behavior and design of steel I-beams with inclined stiffeners

  • Yang, Yang;Lui, Eric M.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.183-205
    • /
    • 2012
  • This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam's lateral-torsional buckling capacity when compared to the stiffeners' location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam's bearing capacity but its lateral-torsional buckling strength.

Optimum Design Criteria based on Capacity of Synchronous Reluctance Motor Using a Coupled FEM & SUMT (유한요소법을 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 구조설계와 SUMT를 이용한 최적설계)

  • Kwon, Sun-Bum;Kim, Gi-Bok;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.126-128
    • /
    • 2004
  • This paper deals with an automatic optimum design based on capacity for a synchronous reluctance motor (SynRM). The focus of this paper is the design relative to the output power on the basis of rotor shape of a SynRM in each capacity. And optimization algorithm is used by means of sequential unconstrained minimization technique(SUMT). The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor geometric dimensions according to capacity starting from an existing motor or a preliminary design.

  • PDF

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

A Study on the Improvement of Bearing Capacity Prediction Equation for Auger-drilled Piling (매입말뚝공법의 지지력 예측식 개선에 관한 연구)

  • 최도웅;한병권;서영화;조성한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.382-389
    • /
    • 2002
  • Recently, auger-drilled piling has been widely used in urban area to reduce the air pollution and noise. But this construction method that its basic theory was introduced from Japan may be changed depending on the each piling company and construction field condition. Therefore, the design code and management method for auger-drilled piling is not defined yet. Especially, the lack of research on the bearing capacity of auger-drilled piling leads to the absence of rational bearing capacity prediction equation. This paper presents the optimum design code and economical construction method of the auger-drilled piling by proposing the new bearing capacity prediction equation based on the site specific soil types and construction conditions. In this paper, existing bearing capacity prediction equations and current pile load tests were compared. And the end bearing capacity and skin friction characteristics were also analyzed by comparing the results of CAPWAP. From the results of analysis, a reliable bearing capacity prediction equation considered soil types is proposed.

  • PDF

The study on the Characteristics of Ultimate Bearing Capacity and Major Design Parameters for Single Stone Column (단일 쇄석다짐말뚝의 지지력 특성과 주요 설계 파라미터에 관한 고찰)

  • Chun, Byung-Sik;Kim, Won-Cheul;Jo, Yang-Woon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.552-560
    • /
    • 2004
  • Stone column is a soil improvement method and can be applicable for loose sand or weak cohesive soil. Since the lack of sand in Korea, stone column seems one of the most adaptable approach for poor ground as a soil improvement method. However, this method was not studied for practical application. In this paper, the most effective design parameters for the being capacity of stone column were studied. The parametric study of major design factors for single stone column was carried out under the bulging and general shear failure condition, respectively. Especially, a test result of single stone column by static load was compared with the bearing capacity values of suggested formulas. The analysis result showed that the ultimate bearing capacity by the formula was much less than the measured value by the static load test. Especially, the result of the parametric study under general shear failure condition showed that the bearing capacity has apparent difference between each suggested formulas with the variation of the major design parameters. Therefore, the result of this study can be a suggestion which is applicable for the field test and the future research.

  • PDF