• Title/Summary/Keyword: Capacity Design

Search Result 5,647, Processing Time 0.035 seconds

Piled Raft Foundations (말뚝지지 전면기초)

  • Kwon, Oh-Kyun;Lee, Whoal
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.102-117
    • /
    • 2002
  • The general design practice for piled footings is based on the assumption that the piles are free-standing, and that all the external loads are carried by the piles, with any contribution of the footing being ignored. This approach is not reasonable, because the footing itself is actually in direct contact with the soil, and thus carries a significant fraction of the loads. In the case of not considering the bearing capacity of footing, the bearing capacity of group piles can be evaluated conservatively in the designing the group piles. There are a number of reasons why the idea of piled raft design with considering the capacity of footing has not become widely used. One of the reasons is the lack of reliable calculation methods for estimating the behavior of piled raft. In this study the bearing capacity, settlement, load distribution, etc. of piled raft footing are studied.

  • PDF

Fuzzy Control with Feedforward Compensator of Superheat in a Variable Speed Refrigeration System

  • Hua, Li;Lee, Dong-Woo;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.252-262
    • /
    • 2007
  • In this paper, we suggest fuzzy control with feedforward compensator of superheat to progress both energy saving and coefficient of performance(COP) in a variable speed refrigeration system. The capacity and superheat are controlled simultaneously and independently by an inverter and an electronic expansion valve respectively for saving energy and improving COP in the system. By adopting the fuzzy control. the controller design for the capacity and superheat is possible without depending on a dynamic model of the system. Moreover, the feedforward compensator of the superheat can eliminate influence of the interfering loop between capacity and superheat. Some experiments are conducted to design the appropriate fuzzy controller by an iteration manner. The results show that the proposed fuzzy controller with the compensator can establish good control performances for the complicated refrigeration system with inherent strong non-linearity.

Capacity Design of a Gateway Router for Smart Farms

  • Lee, Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • In this work, we propose an analytic framework for evaluating the quality of service and dimensioning the link capacity in the gateway router of a smart farm with a greenhouse eco-management system. Specifically, we focus on the gateway router of an IoT network that provides an access service for smart farms. We design the link capacity of a gateway router that is used for the remote management of the greenhouse eco-management system to accommodate both time-critical and delay-tolerant traffic in a greenhouse LAN. For this purpose, we first investigate the ecosystem for smart farm, and we define the specification and requirements of the greenhouse eco-management system. Second, we propose a system model for the link capacity of a gateway that is required to guarantee the delay performance of time-critical applications in the greenhouse LAN. Finally, the validity of the proposed system is demonstrated through a series of numerical experiments.

A Cost-Effective Simulation Procedure for Achieving Target Throughput of New Production Lines (신규제조라인의 목표생산용량 달성을 위한 비용효과적 시뮬레이션 절차)

  • Kim, Seung-Nam;Rim, Suk-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.104-110
    • /
    • 2006
  • When a new facility such as automobile assembly line is designed, computer simulation is often used to estimate its actual throughput level. If it falls short of the target throughput level, then the design must be modified to increase the throughput capacity. For complex facilities having parallel processes and network of material flows, the modification procedure is not trivial. Even if the capacity of a particular bottleneck process is increased, the target throughput may not be achieved because the bottleneck may move to another process. Furthermore, each process has a different set of options with different cost to increase the capacity. In this study, we present a systematic procedure of determining the cost-effective set of options which achieves the target throughput.

Designing hierarchical ring-star networks under node capacity constraints (설비용량을 고려한 계층적 네트워크의 설계 및 분석)

  • 이창호;윤종화;정한욱
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.1
    • /
    • pp.69-83
    • /
    • 1994
  • This paper deals with a capacitated ring-star network design problem (CRSNDP) with node capacity constraints. The CRSNDP is formulated as a mixed 0-1 integer problem, and a 2-phase heuristic solution procedure, ADD & VAM and RING, is developed, in which the CRSNDP is decomposed into two subproblems : the capacitated facility location problem (CFLP) and the traveling sales man problem (TSP). To solve the CFLP in phase I the ADD & VAM procedure selects hub nodes and their appropriate capacity from a candidate set and then assigns them user nodes under node capacity constraints. In phase II the RING procedure solves the TSP to interconnect the selected hubs to form a ring. Finally a solution of the CRSNDP can be achieved through combining two solution of phase I & II, thus a final design of the capacitated ring-star network is determined. The analysis of computational results on various random problems has shown that the 2-phase heuristic procedure produces a solution very fast even with large-scale problems.

  • PDF

Flexural behaviour of square UHPC-filled hollow steel section beams

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.225-237
    • /
    • 2012
  • This paper presents an experimental investigation of the flexural behavior of square hollow steel section (HSS) beams subjected to pure bending. Totally six unfilled and nine ultra high performance concrete (UHPC)-filled HSS beams were tested under four-point bending until failure. The effects of the steel tube thickness, the yield strength of the steel tube and the strength of concrete on moment capacity, curvature, and ductility of UHPC-filled HSS beams were examined. The performance indices named relative ductility index (RDI) and strength increasing factor (SIF) were investigated with regard to different height-to-thickness ratio of the specimens. The flexural strengths obtained from the tests were compared with the values predicted by Eurocode 4, AISC-LRFD and CIDECT design codes. The results showed that the increase in the moment capacity and the corresponding curvature is much greater for thinner HSS beams than thicker ones. Eurocode 4 and AISC-LRFD predict the ultimate moment capacity of the all UHPC-filled HSS beams conservatively.

A Study on the Strength Capacity and the Strengthening Effects of Steel Reinforced Concrete(SRC) Beams with Carbon Fiber Sheets (CFS) and Glass Fiber Sheets (GFS) (탄소섬유 및 유리섬유로 보강한 합성보의 내력산정과 보강효과에 대한연구)

  • 김희규;신영수;최완철;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.565-570
    • /
    • 1997
  • This study is on the strength capacity and the strengthening effects of crarbon fiber sheets(CFS) and glass fiber sheets (GFS) on steel reinforced concrete(SRC) beams. SRC beams are often used on high-rise building construction to save story height and construction cost. However, there are no strengthening design code in Korea and most engineers design it as steel beams ignored the composite effect if reinforced concrete. Test results on steel reinforced concrete beams reveal thar the strength capacity of SRC beam is more than simple addition of steel and reinforced concrete beams. In case of steel reinforced concrete beams, ultimate moment capacity of strengthening beam of carbon fiber sheets is 120% of non-strengthening one.

  • PDF

The Evaluation of the Allowable Bearing Capacity of Foundations using N-Value (N-Value를 이용한 기초의 지지력 산정)

  • 이강운;박택규;정해운
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.281-292
    • /
    • 2001
  • The evaluation of the allowable bearing capacity is the most important step in the design of a foundation. An accurate evaluation of the effect of all factors such as the physical properties of the soil located beneath the area, the size of the area, the depth of foundation, and the position of the water table is impracticable Therefore, the designer is compelled to estimate the allowable bearing capacity on the basis of simple semiempirical rules under cohesionless soils. This paper deals with semiemperical rules for determining allowable bearing capacity based on observed relations between the results of standard penetration test. Additional comparisions between the results of the theoretical methods and the emperical rules are performed to suggest more conservative design for the engineer.

  • PDF

Performance Characteristics with Capacities of Heat Exchangers of a Refrigeration System (열교환기 전열용량이 냉동시스템의 성능에 미치는 영향)

  • 김제봉;김수연;정평석;조경철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.187-195
    • /
    • 2003
  • The geometric size and the refrigeration capacity of a refrigeration system are strongly dependent on the capacity of heat exchanger, which is one of the key design parameters. In this paper, the effect of the capacities of heat exchangers on the performance of a real refrigeration system operated in a vapor compression cycle was analyzed by the numerical simulation. From the results, the conditions that gave the maximum values of the refrigeration capacity or COP were respectively determined as a function of the capacities of condenser and evaporator under the given ambient and operating condition.

Calculation of capacity of solar cell and battery for stable solar system design (안정적인 태양광발전시스템의 설계를 위한 태양전지와 배터리 용량산정 방안)

  • Lee Mi-Young;Lee Jun-Ha;Lee Hoong-Joo;Lee Woo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.396-400
    • /
    • 2005
  • Solar cell and battery capacity are very important for stable design of stand-alone solar photovoltaic power generation system. If capacity computation of solar cell and battery is a wrong, operation of the solar system becomes unstable and results in breakdown. Therefore, in this paper, a solar cell and battery capacity calculation method considering the load characteristics has been proposed for the stable operation of the solar photovoltaic power generation system.

  • PDF