• Title/Summary/Keyword: Capacitor-less

Search Result 207, Processing Time 0.025 seconds

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

Prediction of Impedance Characteristics of Multi-Layer Ceramic Capacitor Based on Coupled Transmission Line Theory (결합 전송선로 이론을 이용한 적층 세라믹 커패시터의 임피던스 특성 예측)

  • Jeon, Jiwoon;Kim, Jonghyeon;Pu, Bo;Zhang, Nan;Song, Seungjae;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.135-147
    • /
    • 2015
  • With the miniaturization and digitalization of electronics industry, demand for Multi-Layer Ceramic Capacitor(MLCC) has increased steadily because of its various applications such as DC Blocking, Decoupling and Filtering etc. The modeling techniques of MLCC has been studied for a long time but most of these modeling method can only be applied after measurement and this has some losses of material, time in both production stage and measurement stage. This paper proposes the modeling method which can predict the frequency characteristics of MLCC from structure data and material data in design stage. The impedance of N-Layer Capacitor can be expressed in differential mathematical form based on coupled transmission line equations. By using this formula, we can predict the impedance of MLCC. As a result, proposed modeling is correspond with simulation, and it takes much less time to obtain the result than the simulation.

A Wideband ${\Delta}{\Sigma}$ Frequency Synthesizer for T-DMB/DAB/FM Applications in $0.13{\mu}m$ CMOS (T-DMB/DAB/FM 수신기를 위한 광대역 델타시그마 분수분주형 주파수합성기)

  • Shin, Jae-Wook;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.75-82
    • /
    • 2010
  • This paper presents a wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer for a multi-band single chip CMOS RFIC transceivers. A wideband VCO utilizes a 6-bit switched capacitor array bank for 2340~3940 MHz frequency range. VCO frequency calibration circuit is designed for optimal capacitor bank code selection before phase locking process. It finishes the calibration process in $2{\mu}s$ over the whole frequency band. The LO generation block has selectable multiple division ratios of ${\div}2$, ${\div}16$, and ${\div}32$ to generate LO I/Q signals for T-DMB/DAB/FM Radio systems in L-Band (1173~1973 MHz), VHF-III (147~246 MHz), VFH-II (74~123 MHz), respectively. The measured integrated phase noise is quite low as it is lower than 0.8 degree RMS over the whole frequency band. Total locking time of the ${\Delta}{\Sigma}$ frequency synthesizer including VCO frequency calibration time is less than $50{\mu}s$. The wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer is fabricated in $0.13{\mu}m$ CMOS technology, and it consumes 15.8 mA from 1.2 V DC supply.

A Design of CMOS 5GHz VCO using Series Varactor and Parallel Capacitor Banks for Small Kvco Gain (작은 Kvco 게인를 위한 직렬 바랙터와 병렬 캐패시터 뱅크를 이용한 CMOS 5GHz VCO 설계)

  • Mi-Young Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2024
  • This paper presents the design of a voltage controlled oscillator (VCO) which is one of the key building blocks in modern wireless communication systems with small VCO gain (Kvco) variation. To compensate conventional large Kvco variation, a series varactor bank has been added to the conventional LC-tank with parallel capacitor bank array. And also, in order to achieve excellent phase noise performance while maintaining wide tuning range, a mixed coarse/fine tuning scheme(series varactor array and parallel capacitor array) is chosen. The switched varactor array bank is controlled by the same digital code for switched capacitor array without additional digital circuits. For use at a low voltage of 1.2V, the proposed current reference circuit in this paper used a current reference circuit for safety with the common gate removed more safely. Implemented in a TSMC 0.13㎛ CMOS RF technology, the proposed VCO can be tuned from 4.4GH to 5.3GHz with the Kvco (VCO gain ) variation of less than 9.6%. While consuming 3.1mA from a 1.2V supply, the VCO has -120dBc/Hz phase noise at 1MHz offset from the carrier of the 5.3 GHz.

Natural Balancing of the Neutral Point Potential of a Three-Level Inverter with Improved Firefly Algorithm

  • Gnanasundari, M.;Rajaram, M.;Balaraman, Sujatha
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1306-1315
    • /
    • 2016
  • Modern power systems driven by high-power converters have become inevitable in view of the ever increasing demand for electric power. The total power loss can be reduced by limiting the switching losses in such power converters; increased power efficiency can thus be achieved. A reduced switching frequency that is less than a few hundreds of hertz is applied to power converters that produce output waveforms with high distortion. Selective harmonic elimination pulse width modulation (SHEPWM) is an optimized low switching frequency pulse width modulation method that is based on offline estimation. This method can pre-program the harmonic profile of the output waveform over a range of modulation indices to eliminate low-order harmonics. In this paper, a SHEPWM scheme for three-phase three-leg neutral point clamped inverter is proposed. Aside from eliminating the selected harmonics, the DC capacitor voltages at the DC bus are also balanced because of the symmetrical pulse pattern over a quarter cycle of the period. The technique utilized in the estimation of switching angles involves the firefly algorithm (FA). Compared with other techniques, FA is more robust and entails less computation time. Simulation in the MATLAB/SIMULINK environment and experimental verification in the very large scale integration platform with Spartan 6A DSP are performed to prove the validity of the proposed technique.

Novel Single-Stage Power Factor Correction AC/DC Converter with Low DC Link Voltage using New Magnetic Feedback Technique (새로운 마그네틱 피드백 기법을 이용하여 낮은 링크 전압을 갖는 새로운 단일 전력단 역률 개선 AC/DC 컨버터)

  • Choi E. S.;Yoon H. K.;Kim C. E.;Moon G. W.;Youn M. J.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.528-532
    • /
    • 2004
  • Novel single-stage power factor correction AC/DC converter with low DC link voltage using new magnetic feedback technique is proposed in this paper. The Proposed converter has high power factor, tight output voltage regulation and low link capacitor voltage less than 450V for all the load range through the universal input line. This converter has also no dead-zone in the input current, which is seen in the conventional converter using the previous magnetic feedback technique. In this paper, the analysis of operations and features of the proposed converter is provided, and the experimental results of 90W-prototype shows the low harmonic distortions satisfied with EN 61000-3-2 Class D, high power factor and low link voltage less than 450V.

  • PDF

A Study on Input Current Waveform Analysis for Step Up-Down AC-DC Converter of High Power Factor added Electric Isolation (고역률 스텝 업-다운 절연형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Lee, Bong-Seob;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.34-36
    • /
    • 2008
  • This paper is given a full detail of mathematical analyses of input current for novel active type power factor correction(PFC) AC-DC converter of step up-down added electric isolation. These are compared with harmonics components of input current for a conventional PFC converter of electric isolation type. The proposed PFC converter is constructed in using a new loss-less snubber circuit to achieve a soft switching of control device. Also the proposed converter for discontinuous conduction mode(DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity and the control method is simple. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of a conventional PFC converter. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

  • PDF

A New CMOS Voltage-Controlled Oscillator (새로운 CMOS 전압-제어 발진기)

  • Chung, Won-Sup;Kim, Hong-Bae;Lim, In-Gi;Kwack, Kae-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1274-1281
    • /
    • 1988
  • A new voltage-controlled oscillator based on a voltage-controlled integrator has been developed. It consists of a Schmitt-trigger and a voltage-controlled integrator, which is realized by an operational transconductance amplifier (OTA) and a grounded capacitor. The input control voltage changes the time constant of the integrator, and hence the oscillation frequency. The SPICE simulation shows that a prototype circuit, which oscillates at 12.21 KHz at 0 V, has the conversion sencitivity 2,437 Hz/V and the residual nonlinearity less than 0.68% in a control voltage range from -2 V to 2 V. It also shows that the circuit provides a temperature drift less than + 250 ppm/$^{\circ}$C for frequencies up to 100 KHz.

  • PDF

A study on the growth of $Al_2{O_3}$ insulation films and its application ($Al_2{O_3}$절연박막의 형성과 그 활용방안에 관한 연구)

  • 김종열;정종척;박용희;성만영
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.57-63
    • /
    • 1994
  • Aluminum oxide($Al_2{O_3}$) offers some unique advantages over the conventional silicon dioxide( $SiO_{2}$) gate insulator: greater resistance to ionic motion, better radiation hardness, possibility of obtaining low threshold voltage MOS FETs, and possibility of use as the gate insulator in nonvolatile memory devices. We have undertaken a study of the dielectric breakdown of $Al_2{O_3}$ on Si deposited by GAIVBE technique. In our experiments, we have varied the $Al_2{O_3}$ thickness from 300.angs. to 1400.angs. The resistivity of $Al_2{O_3}$ films varies from 108 ohm-cm for films less than 100.angs. to 10$_{13}$ ohm-cm for flims on the order of 1000.angs. The flat band shift is positive, indicating negative charging of oxide. The magnitude of the flat band shift is less for negative bias than for positive bias. The relative dielectric constant was 8.5-10.5 and the electric breakdown fields were 6-7 MV/cm(+bias) and 11-12 MV/cm (-bias).

  • PDF

A Study on Waveform Analysis of Input Current for Novel Boost AC-DC Converter of High Power Factor (새로운 고역률 승압형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.102-108
    • /
    • 2005
  • In this paper, authors propose novel boost AC-DC converter of high power factor and analyze for waveform and harmonics component of input current. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of at input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of conventional converter of high power factor. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.