• Title/Summary/Keyword: Capacitor mismatch

Search Result 38, Processing Time 0.019 seconds

A 14b 150MS/s 140mW $2.0mm^2$ 0.13um CMOS ADC for SDR (Software Defined Radio 시스템을 위한 14비트 150MS/s 140mW $2.0mm^2$ 0.13um CMOS A/D 변환기)

  • Yoo, Pil-Seon;Kim, Cha-Dong;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.27-35
    • /
    • 2008
  • This work proposes a 14b 150MS/s 0.13um CMOS ADC for SDR systems requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC employs a calibration-free four-step pipeline architecture optimizing the scaling factor for the input trans-conductance of amplifiers and the sampling capacitance in each stage to minimize thermal noise effects and power consumption at the target resolution and sampling rate. A signal- insensitive 3-D fully symmetric layout achieves a 14b level resolution by reducing a capacitor mismatch of three MDACs. The proposed supply- and temperature- insensitive current and voltage references with on-chip RC filters minimizing the effect of switching noise are implemented with off-chip C filters. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates a measured DNL and INL within 0.81LSB and 2.83LSB, at 14b, respectively. The ADC shows a maximum SNDR of 64dB and 61dB and a maximum SFDR of 71dB and 70dB at 120MS/s and 150MS/s, respectively. The ADC with an active die area of $2.0mm^2$ consumes 140mW at 150MS/s and 1.2V.

A 14b 100MS/s $3.4mm^2$ 145mW 0.18um CMOS Pipeline A/D Converter (14b 100MS/s $3.4mm^2$ 145mW 0.18un CMOS 파이프라인 A/D 변환기)

  • Kim Young-Ju;Park Yong-Hyun;Yoo Si-Wook;Kim Yong-Woo;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.54-63
    • /
    • 2006
  • This work proposes a 14b 100MS/s 0.18um CMOS ADC with optimized resolution, conversion speed, die area, and power dissipation to obtain the performance required in the fourth-generation mobile communication systems. The 3-stage pipeline ADC, whose optimized architecture is analyzed and verified with behavioral model simulations, employs a wide-band low-noise SHA to achieve a 14b level ENOB at the Nyquist input frequency, 3-D fully symmetric layout techniques to minimize capacitor mismatch in two MDACs, and a back-end 6b flash ADC based on open-loop offset sampling and interpolation to obtain 6b accuracy and small chip area at 100MS/s. The prototype ADC implemented in a 0.18um CMOS process shows the measured DNL and INL of maximum 1.03LSB and 5.47LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 59dB and 72dB, respectively, and a power consumption of 145mW at 100MS/s and 1.8V. The occupied active die area is $3.4mm^2$.

A Re-configurable 0.8V 10b 60MS/s 19.2mW 0.13um CMOS ADC Operating down to 0.5V (0.5V까지 재구성 가능한 0.8V 10비트 60MS/s 19.2mW 0.13um CMOS A/D 변환기)

  • Lee, Se-Won;Yoo, Si-Wook;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.60-68
    • /
    • 2008
  • This work describes a re-configurable 10MS/s to 100MS/s, low-power 10b two-step pipeline ADC operating at a power supply from 0.5V to 1.2V. MOS transistors with a low-threshold voltage are employed partially in the input sampling switches and differential pair of the SHA and MDAC for a proper signal swing margin at a 0.5V supply. The integrated adjustable current reference optimizes the static and dynamic performance of amplifiers at 10b accuracy with a wide range of supply voltages. A signal-isolated layout improves the capacitor mismatch of the MDAC while a switched-bias power-reduction technique reduces the power dissipation of comparators in the flash ADCs. The prototype ADC in a 0.13um CMOS process demonstrates the measured DNL and INL within 0.35LSB and 0.49LSB. The ADC with an active die area of $0.98mm^2$ shows a maximum SNDR and SFDR of 56.0dB and 69.6dB, respectively, and a power consumption of 19.2mW at a nominal condition of 0.8V and 60MS/s.

A 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for High-Quality Video Systems (고화질 영상 시스템 응용을 위한 12비트 130MS/s 108mW $1.8mm^2$ 0.18um CMOS A/D 변환기)

  • Han, Jae-Yeol;Kim, Young-Ju;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.77-85
    • /
    • 2008
  • This work proposes a 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for high-quality video systems such as TFT-LCD displays and digital TVs requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC optimizes power consumption and chip area at the target resolution and sampling rate based on a three-step pipeline architecture. The input SHA with gate-bootstrapped sampling switches and a properly controlled trans-conductance ratio of two amplifier stages achieves a high gain and phase margin for 12b input accuracy at the Nyquist frequency. A signal-insensitive 3D-fully symmetric layout reduces a capacitor and device mismatch of two MDACs. The proposed supply- and temperature- insensitive current and voltage references are implemented on chip with a small number of transistors. The prototype ADC in a 0.18um 1P6M CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 2.12LSB, respectively. The ADC shows a maximum SNDR of 53dB and 51dB and a maximum SFDR of 68dB and 66dB at 120MS/s and 130MS/s, respectively. The ADC with an active die area of $1.8mm^2$ consumes 108mW at 130MS/s and 1.8V.

A 10b 250MS/s $1.8mm^2$ 85mW 0.13um CMOS ADC Based on High-Accuracy Integrated Capacitors (높은 정확도를 가진 집적 커페시터 기반의 10비트 250MS/s $1.8mm^2$ 85mW 0.13un CMOS A/D 변환기)

  • Sa, Doo-Hwan;Choi, Hee-Cheol;Kim, Young-Lok;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.58-68
    • /
    • 2006
  • This work proposes a 10b 250MS/s $1.8mm^2$ 85mW 0.13um CMOS A/D Converter (ADC) for high-performance integrated systems such as next-generation DTV and WLAN simultaneously requiring low voltage, low power, and small area at high speed. The proposed 3-stage pipeline ADC minimizes chip area and power dissipation at the target resolution and sampling rate. The input SHA maintains 10b resolution with either gate-bootstrapped sampling switches or nominal CMOS sampling switches. The SHA and two MDACs based on a conventional 2-stage amplifier employ optimized trans-conductance ratios of two amplifier stages to achieve the required DC gain, bandwidth, and phase margin. The proposed signal insensitive 3-D fully symmetric capacitor layout reduces the device mismatch of two MDACs. The low-noise on-chip current and voltage references can choose optional off-chip voltage references. The prototype ADC is implemented in a 0.13um 1P8M CMOS process. The measured DNL and INL are within 0.24LSB and 0.35LSB while the ADC shows a maximum SNDR of 54dB and 48dB and a maximum SFDR of 67dB and 61dB at 200MS/s and 250MS/s, respectively. The ADC with an active die area of $1.8mm^2$ consumes 85mW at 250MS/s at a 1.2V supply.

A 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS ADC for Digital Multimedia Broadcasting applications (DMB 응용을 위한 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D 변환기)

  • Cho, Young-Jae;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.37-47
    • /
    • 2006
  • This work proposes a 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D Converter (ADC) for high-performance wireless communication systems such as DVB, DAB and DMB simultaneously requiring low voltage, low power, and small area. A two-stage pipeline architecture minimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate while switched-bias power reduction techniques reduce the power consumption of analog amplifiers. A low-power sample-and-hold amplifier maintains 10b resolution for input frequencies up to 60MHz based on a single-stage amplifier and nominal CMOS sampling switches using low threshold-voltage transistors. A signal insensitive 3-D fully symmetric layout reduces the capacitor and device mismatch of a multiplying D/A converter while low-noise reference currents and voltages are implemented on chip with optional off-chip voltage references. The employed down-sampling clock signal selects the sampling rate of 25MS/s or 10MS/s with a reduced power depending on applications. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.42LSB and 0.91LSB and shows a maximum SNDR and SFDR of 56dB and 65dB at all sampling frequencies up to 2SMS/s, respectively. The ADC with an active die area if $0.8mm^2$ consumes 4.8mW at 25MS/s and 2.4mW at 10MS/s at a 1.2V supply.

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

An Area-Efficient Time-Shared 10b DAC for AMOLED Column Driver IC Applications (AMOLED 컬럼 구동회로 응용을 위한 시분할 기법 기반의 면적 효율적인 10b DAC)

  • Kim, Won-Kang;An, Tai-Ji;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.87-97
    • /
    • 2016
  • This work proposes a time-shared 10b DAC based on a two-step resistor string to minimize the effective area of a DAC channel for driving each AMOLED display column. The proposed DAC shows a lower effective DAC area per unit column driver and a faster conversion speed than the conventional DACs by employing a time-shared DEMUX and a ROM-based two-step decoder of 6b and 4b in the first and second resistor string. In the second-stage 4b floating resistor string, a simple current source rather than a unity-gain buffer decreases the loading effect and chip area of a DAC channel and eliminates offset mismatch between channels caused by buffer amplifiers. The proposed 1-to-24 DEMUX enables a single DAC channel to drive 24 columns sequentially with a single-phase clock and a 5b binary counter. A 0.9pF sampling capacitor and a small-sized source follower in the input stage of each column-driving buffer amplifier decrease the effect due to channel charge injection and improve the output settling accuracy of the buffer amplifier while using the top-plate sampling scheme in the proposed DAC. The proposed DAC in a $0.18{\mu}m$ CMOS shows a signal settling time of 62.5ns during code transitions from '$000_{16}$' to '$3FF_{16}$'. The prototype DAC occupies a unit channel area of $0.058mm^2$ and an effective unit channel area of $0.002mm^2$ while consuming 6.08mW with analog and digital power supplies of 3.3V and 1.8V, respectively.