• Title/Summary/Keyword: Capacitor balance

Search Result 72, Processing Time 0.022 seconds

DC-Link Voltage Balance Control in Three-phase Four-wire Active Power Filters

  • Wang, Yu;Guan, Yuanpeng;Xie, Yunxiang;Liu, Xiang
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1928-1938
    • /
    • 2016
  • The three-phase four-wire shunt active power filter (APF) is an effective method to solve the harmonic problem in three-phase four-wire power systems. In addition, it has two possible topologies, a four-leg inverter and a three-leg inverter with a split-capacitor. There are some studies investigating DC-link voltage control in three-phase four-wire APFs. However, when compared to the four-leg inverter topology, maintaining the balance between the DC-link upper and lower capacitor voltages becomes a unique problem in the three-leg inverter with a split-capacitor topology, and previous studies seldom pay attention to this fact. In this paper, the influence of the balance between the two DC-link voltages on the compensation performance, and the influence of the voltage balance controller on the compensation performance, are analyzed. To achieve the balance between the two DC-link capacitor voltages, and to avoid the adverse effect the voltage balance controller has on the APF compensation performance, a new DC-link voltage balance control strategy for the three-phase four-wire split-capacitor APF is proposed. Representative simulation and experimental results are presented to verify the analysis and the proposed DC-link voltage balance control strategy.

A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of the Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 이루기 위한 캐리어 비교방식의 대칭 기법)

  • 전재현;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.624-631
    • /
    • 2003
  • This paper presents a simple carrier symmetric method for the voltage balance of flying capacitors in FCMLI(flying capacitor multi-level inverter). To achieve the voltage balance of flying capacitors, the utilization of each carrier must be balanced during a half-cycle of the switching period such as PSPWM(Phase-Shifted PWM). However, the CRPWM(Carrier Redistribution PWM) method causes the fluctuation of flying capacitor voltages because the balanced utilization of carriers is not achieved. Moreover, it does not consider that the load current change has an influence on flying capacitor voltages by assuming that the current flows into the load. To overcome the drawbacks of CRPWM, it is modified by the technique that carriers of each band are disposed symmetrically at every fundamental period. Firstly, the CRPWM method is reviewed and the theory on voltage balance of flying capacitors is analyzed. The proposed method is introduced and is verified through the experiment result.

An Interleaved Five-level Boost Converter with Voltage-Balance Control

  • Chen, Jianfei;Hou, Shiying;Deng, Fujin;Chen, Zhe;Li, Jian
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1735-1742
    • /
    • 2016
  • This paper proposes an interleaved five-level boost converter based on a switched-capacitor network. The operating principle of the converter under the CCM mode is analyzed. A high voltage gain, low component stress, small input current ripple, and self-balancing function for the capacitor voltages in the switched-capacitor networks are achieved. In addition, a three-loop control strategy including an outer voltage loop, an inner current loop and a voltage-balance loop has been researched to achieve good performances and voltage-balance effect. An experimental study has been done to verify the correctness and feasibility of the proposed converter and control strategy.

The Carrier-based SVPWM method for voltage balance of flying capacitor multilevel inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시티 잔압 균형을 위한 캐리어 비교방식의 펄스 폭 변조 기법)

  • 강대욱
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.313-316
    • /
    • 2000
  • This paper proposes a new solution by carrier-based SVPWM method to solve the most serious problem of Flying Capacitor Multi-level Inverter that is unbalance of capacitor voltages The voltage unbalance is occurred by the difference of each capacitor's charging and discharging time applied to Flying Capacitor Multi-level Inverter. It controls the variation of capacitor voltages into the mean'0' during some period by means of new carriers using the leg voltage redundancy in the Inverter. The solution can be easily expanded to the multi-level. Also this method can make the switching loss and conduction loss of device equal by the use of leg voltage redundancy. First the unbalance of capacitor voltage is analyzed and the conventional theory of self-balance using phase-shifted carrier is reviewed. And then the new method that is suitable to the Flying Capacitor Inverter is explained. The simulation results would be shown to verify the proposed method

  • PDF

The Carrier-based PWM Method for Voltage Balance of Flying Capacitor Multi-bevel Inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 위한 캐리어 비교방식의 펄스폭변조기법)

  • 이상길;강대욱;이요한;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 2002
  • This paper proposes a new carrier-based PWM method to solve the most serious problem of flying capacitor multi-level inverter that is the unbalance of capacitor voltages. The voltage unbalance occurs due to the difference of each capacitor's charging and discharging time applied to Flying Capacitor Inverter. New solution controls the variation of capacitor voltages into the mean '0'during some period by means of new carriers using the leg voltage redundancy in the flying capacitor inverter. The solution can be easily expanded to the multi-level inverter. The leg voltage redundancy in the new method makes the switching loss of device equals to the conduction loss of device. This paper will examine the unbalance of capacitor voltage and the conventional theory of self-balance using Phase-shifted carrier. And then the new method that is suitable to the flying capacitor inverter will be explained.

A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of the Flying Capacitor Multi-level Iinverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 이루기 위한 캐리어 비교방식을 이용한 캐리어 대칭 기법)

  • Jeon J.H.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.606-610
    • /
    • 2003
  • This paper presents a simple carrier symmetric method for the voltage balance of flying capacitors in FCMLI(flying capacitor multi-level inverter). To achieve the voltage balance of flying capacitors, the utilization of each carrier must be balanced during a half-cycle of the switching period such as PSPWM(Phase-Shifted PWM). However, the CRPWM(Carrier Redistribution PWM) method causes the fluctuation of flying capacitor voltages because the balanced utilization of carriers is not achieved. Moreover, it does not consider that the load current change has an influence on flying capacitor voltages by assuming that the current flows Into the load. To overcome the drawbacks of CRPWM, it is modified by the technique that carriers of each band are disposed symmetrically at every fundamental period. Firstly, the CRPWN method is reviewed and the theory on voltage balance of flying capacitors is analyzed. The proposed method Is introduced and is verified through the experiment result.

  • PDF

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Modeling, Analysis, and Enhanced Control of Modular Multilevel Converters with Asymmetric Arm Impedance for HVDC Applications

  • Dong, Peng;Lyu, Jing;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1683-1696
    • /
    • 2018
  • Under the conventional control strategy, the asymmetry of arm impedances may result in the poor operating performance of modular multilevel converters (MMCs). For example, fundamental frequency oscillation and double frequency components may occur in the dc and ac sides, respectively; and submodule (SM) capacitor voltages among the arms may not be balanced. This study presents an enhanced control strategy to deal with these problems. A mathematical model of an MMC with asymmetric arm impedance is first established. The causes for the above phenomena are analyzed on the basis of the model. Subsequently, an enhanced current control with five integrated proportional integral resonant regulators is designed to protect the ac and dc terminal behavior of converters from asymmetric arm impedances. Furthermore, an enhanced capacitor voltage control is designed to balance the capacitor voltage among the arms with high efficiency and to decouple the ac side control, dc side control, and capacitor voltage balance control among the arms. The accuracy of the theoretical analysis and the effectiveness of the proposed enhanced control strategy are verified through simulation and experimental results.

Active Voltage-balancing Control Methods for the Floating Capacitors and DC-link Capacitors of Five-level Active Neutral-Point-Clamped Converter

  • Li, Junjie;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.653-663
    • /
    • 2017
  • Multilevel active neutral-point-clamped (ANPC) converter combines the advantages of three-level ANPC converter and multilevel flying capacitor (FC) converter. However, multilevel ANPC converter often suffers from capacitor voltage balancing problems. In order to solve the capacitor voltage balancing problems for five-level ANPC converter, phase-shifted pulse width modulation (PS-PWM) is used, which generally provides natural voltage balancing ability. However, the natural voltage balancing ability depends on the load conditions and converter parameters. In order to eliminate voltage deviations under steady-state and dynamic conditions, the active voltage-balancing control (AVBC) methods of floating capacitors and dc-link capacitors based on PS-PWM are proposed. First, the neutral-point current is regulated to balance the neutral-point voltage by injecting zero-sequence voltage. After that, the duty cycles of the redundant switch combinations are adjusted to balance the floating-capacitor voltages by introducing moderating variables for each of the phases. Finally, the effectiveness of the proposed AVBC methods is verified by experimental results.

DC-Link Capacitor Voltage Balanced Modulation Strategy Based on Three-Level Neutral-Point-Clamped Cascaded Rectifiers

  • Han, Pengcheng;He, Xiaoqiong;Zhao, Zhiqin;Yu, Haolun;Wang, Yi;Peng, Xu;Shu, Zeliang
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.99-107
    • /
    • 2019
  • This study proposes a new modulation strategy to deal with unbalanced output voltage that is based on three-level neutral-point-clamped cascaded rectifiers. The fundament idea is to reallocate the value of the voltage levels generated by each of the modules on the basis of space vector pulse width modulation. This proposed modulation strategy can reduce the switching frequency while maintaining the mutual-module voltage balance. First, an analysis of unbalanced output voltage is reflected. Then a new modulation strategy is introduced in detail. Internal module capacitor voltages are balanced by the selection of redundant vectors. Moreover, the voltage balance ability is calculated. Finally, the feasibility of this modulation strategy is verified through experimental results.