• Title/Summary/Keyword: Capacitor Quality

Search Result 196, Processing Time 0.02 seconds

Design of The Bluetooth Negative Resistor Oscillator using the Improved Spiral Inductor (향상된 나선형 인덕터를 이용한 블루투스 부성저항발진기 설계)

  • 손주호;최석우;김동용
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.325-331
    • /
    • 2003
  • In this paper, we designed a spiral inductor and voltage controlled oscillator with the negative resistor for the bluetooth receiver by using 0.25$\mu\textrm{m}$ 1-poly 5-metal CMOS n-well process. The proposed inductor, which applies multi layer metal structure, is a structure that decreases resistance value by increasing he metal thickness. As the resistance value decreases, the quality factor Q has improved. Also, voltage-controlled oscillator is designed applying 1 port negative resistance, and changes its oscillating frequency by varying outside capacitor values. The simulation results show that oscillating frequency is 2.33~2.58GHz changing from 2pF to 14pF, and the oscillator has oscillating power over 0dBm.

  • PDF

A Zero Sequence Voltage Injection Method for Cascaded H-bridge D-STATCOM

  • Yarlagadda, Srinivasa Rao;Pathak, Mukesh Kumar
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1088-1096
    • /
    • 2017
  • Load variations on a distribution line result in voltage fluctuations at the point of common coupling (PCC). In order to keep the magnitude of the PCC voltage constant at its rated value and obtain zero voltage regulation (ZVR), a D-STATCOM is installed for voltage correction. Moreover, the ZVR mode of a D-STATCOM can also be used to balance the source current during unbalanced loading. For medium voltage and high power applications, a D-STATCOM is realized by the cascaded H-bridge topology. In the ZVR mode, the D-STATCOM may draw unbalanced current and in this process is required to handle different phase powers leading to deviations in the cluster voltages. Zero sequence voltage needs to be injected for ZVR mode, which creates circulating power among the phases of the D-STATCOM. The computed zero sequence voltage and the individual DC capacitor balancing controller help the DC cluster voltage follow the reference voltage. The effectiveness of the control scheme is verified by modeling the system in MATLAB/SIMULINK. The obtained simulations are further validated by the experimental results using a dSPACE DS1106 and five-level D-STATCOM experimental set up.

Analysis and Design of a DC-Side Symmetrical Class-D ZCS Rectifier for the PFC of Lighting Applications

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon;Higuchi, Kohji
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.621-633
    • /
    • 2015
  • This paper proposes the analysis and design of a DC-side symmetrical zero-current-switching (ZCS) Class-D current-source driven resonant rectifier to improve the low power-factor and high line current harmonic distortion of lighting applications. An analysis of the junction capacitance effect of Class-D ZCS rectifier diodes, which has a significant impact on line current harmonic distortion, is discussed in this paper. The design procedure is based on the principle of the symmetrical Class-D ZCS rectifier, which ensures more accurate results and provides a more systematic and feasible analysis methodology. Improvement in the power quality is achieved by using the output characteristics of the DC-side Class-D ZCS rectifier, which is inserted between the front-end bridge-rectifier and the bulk-filter capacitor. By using this symmetrical topology, the conduction angle of the bridge-rectifier diode current is increased and the low line harmonic distortion and power-factor near unity were naturally achieved. The peak and ripple values of the line current are also reduced, which allows for a reduced filter-inductor volume of the electromagnetic interference (EMI) filter. In addition, low-cost standard-recovery diodes can be employed as a bridge-rectifier. The validity of the theoretical analysis is confirmed by simulation and experimental results.

Application of Multi-Level Inverter for Improvement of Power Quality in AC 25[kV] Electrified Railway System (교류전기철도 전력품질 향상을 위한 직.병렬 보상장치 적용에 관한 연구)

  • Park, Soo-Cheol;Song, Joong-Ho;Chang, Sang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.131-141
    • /
    • 2007
  • This paper proposes analysis on new equipment for power quality in electric railway. The proposed equipment consists of series inverter and parallel inverter. Each inverter is connected by capacitor as dc link. This structure can be compensated for active and reactive power in catenary through transformer. We verified the proposed equipment using the PSCAD/EMTDC and the calculation results from the proposed approach are widely described in the paper.

A Study of Seamless Power Supply using EDLC on Battery Change of Smartphone (EDLC를 이용한 스마트폰의 배터리 교환 시 연속적 전원 공급에 관한 연구)

  • Choi, Sang-Hun;Lee, Yong-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.61-67
    • /
    • 2015
  • Certainly, we are living in a true mobile society. At the end of 2014, approximately 40million 560thousand people are subscribed to smartphone services in Korea, using more than 2000MB of mobile data per a person. The use of smartphone is expected to increase. Moreover, smartphone moves toward becoming a requisite for modern people. Under the circumstances, high-speed communication services such as LTE provide high quality services anywhere and anytime and, furthermore, the development of high performances of the application makes the life patterns of modern people link directly to smartphone. Almost every day, new creative services are being introduced and the demands of on-line streaming services such as high-performance game and YouTube are increasing day after day. However, although smartphones are getting smarter and high quality services are rapidly growing, consumers still complain about the insufficient usage time caused by the capacity of batteries. In order to solve this problem, this thesis suggests EDLC(Electric Double-Layer Capacitor) uses as a supplemental power supply to keep the continuity of work while switching batteries. Through this approach, the running time of smartphone becomes longer as the number of batteries without power off and the purpose of this study is to maximize the convenience of using smartphone by eliminating the initialization of memories and the loss of time of rebooting while batteries are switched.

Design of a Microwave Bias-Tee Using Lumped Elements with a Wideband Characteristic for a High Power Amplifier (광대역 특성을 갖는 집중 소자를 이용한 고출력 증폭기용 마이크로파 바이어스-티의 설계)

  • Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.683-693
    • /
    • 2011
  • In this paper, a design of high current and broad-band microwave bias-tee was presented for a stable bias of a high power amplifier. An input impedance of bias-tee should be shown to 50 ohm with the wideband in order to be stably-biased the amplifier. For this design of the bias-tee, a capacitor of bias-tee for a DC block was designed with a high wide-band admittance by a parallel sum of capacitors, and a inductor for a RF choke and a DC feeding was designed with a high wide-band impedance by a series sum of inductors. As this inductor and capacitor for the sum has each SRF, band-limitation of lumped element was driven from SRF. This limitation was overcome by control of a resonance's quality factor with adding a resistor. 1608 SMD chips for design's element was mounted on the this pattern for the designed bias-tee. The fabricated bias-tee presented 10 dB of return loss and wide-band about 50 ohm input impedance at 10 MHz~10 GHz.

Improvement in $AI_2O_3$ dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique (ALD법으로 제조된 $AI_2O_3$막의 유전적 특성)

  • 김재범;권덕렬;오기영;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.183-188
    • /
    • 2002
  • In the present study AI$(CH_3)_3)$films were deposited by the ALD technique using trimethylaluminum(TMA) and ozone to improve the quality of the AI$(CH_3)_3)$ films, since the $OH^-$ radicals existing in the AI$(CH_3)_3)$ films deposited using TMA and $H_2O$ degrade the physical and the dielectric properties of the AI$(CH_3)_3)$ film. The XPS analysis results indicate that the $OH^-$ radical concentration in the AI$(CH_3)_3)$film deposited using $O_3$is lower than that using $H_2O$. The etch rate of the AI$(CH_3)_3)$film deposited using $O_3$is also lower than that using $H_2O$, suggesting that the chemical inertness of the former is better than the latter. The MIS capacitor fabricated with the TiN conductor and the $Al_2$O$_3$dielectrics formed using $O_3$offers lower leakage current, better insulating property and smaller flat band voltage shift $({\Delta}V_{FB})$.

Structural and Electrical Properties of Amorphous 2Ti4O12 Thin Films Grown on TiN Substrate (TiN 기판 위에 성장시킨 비정질 BaSm2Ti4O12 박막의 구조 및 전기적 특성 연구)

  • Park, Yong-Jun;Paik, Jong-Hoo;Lee, Young-Jin;Jeong, Young-Hun;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.169-174
    • /
    • 2008
  • The structural and electrical properties of amorphous $BaSm_2Ti_4O_{12}$ (BSmT) films on a $TiN/SiO_2/Si$ substrate deposited using a RF magnetron sputtering method were investigated. The deposition of BSmT films was carried out at $300^{\circ}C$ in a mixed oxygen and argon ($O_2$ : Ar = 1 : 4) atmosphere with a total pressure of 8.0 mTorr. In particular, a 45 nm-thick amorphous BSmT film exhibited a high capacitance density and low dissipation factor of $7.60\;fF/{\mu}m2$ and 1.3%, respectively, with a dielectric constant of 38 at 100 kHz. Its capacitance showed very little change, even in GHz ranges from 1.0 GHz to 6.0 GHz. The quality factor of the BSmT film was as high as 67 at 6 GHz. The leakage current density of the BSmT film was also very low, at approximately $5.11\;nA/cm^2$ at 2 V; its conduction mechanism was explained by the the Poole-Frenkel emission. The quadratic voltage coefficient of capacitance of the BSmT film was approximately $698\;ppm/V^2$, which is higher than the required value (<$100\;ppm/V^2$) for RF application. This could be reduced by improving the process condition. The temperature coefficient of capacitance of the film was low at nearly $296\;ppm/^{\circ}C$ at 100 kHz. Therefore, amorphous BSmT grown on a TiN substrate is a viable candidate material for a metal-insulator-metal capacitor.

Frequency-Tunable Bandpass Filter Design Using Active Inductor (능동 인덕터를 이용한 주파수 가변형 대역통과 필터 설계)

  • Lee, Seok-Jin;Choi, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3425-3430
    • /
    • 2013
  • The fast-growing market in wireless communications has led to the development of multi-standard mobile terminals. In this paper, a frequency-tunable active RC bandpass filter for multi-standards wireless communication system is designed using an active inductor. The conventional bandpass filter design methods employ the high order filter or high quality factor Q to improve the stopband attenuation characteristics and frequency selectivity of the passband. The proposed bandpass filter based on the high Q active inductor has an improved frequency characteristics. The center frequency and gain of the designed bandpass filter is tuned by employing the tuning circuit. We have performed the simulation using TSMC $0.18{\mu}m$ process parameter to analyze the characteristics of the designed active RC bandpass filter. The bandpass filter with Q=20.5 has 90MHz half power bandwidth at the center frequency of 1.86GHz. Moreover, the center frequency of the proposed bandpass filter can be tuned between 1.86~2.38GHz for the multi-standards wireless communication system using the capacitor of the tuning circuit.

Physical and Electrical Characteristics of Wet Oxidized LPCVD Silicon Nitride Films (습식 산화한 LPCVD Silicon Nitride층의 물리적, 전기적 특성)

  • Lee, Eun-Gu;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.662-668
    • /
    • 1994
  • The physical and electrical characteristics of sub-l0nm thick capacitor dielectrics formed by wet oxidation of silicon nitride(oxide/nitride composite) and by removing the top oxide of oxidized silicon nitride(0xynitride) are described. For the capacitors with an oxide/nitride composite layer, the capacitance decreases sharply, but the breakdown field increases with an increase in the wet oxidation time at $900^{\circ}C$. For the capacitors with oxynitride layers, the values of both the capacitance and the breakdown field increase with increasing wet oxidation time. The reduction of effective thickness and the improved quality of oxynitride film are responsible for the improved capacitance and increased breakdown fields, respectively. In addition, intrinsic TDDB characteristics and early breakdown failure rate of oxynitride film are improved with increasing oxidation time. Consequently, the oxynitride film is suitable for dynamic memories as a thin dielectric film.

  • PDF