• 제목/요약/키워드: Capacitive electrodes

검색결과 131건 처리시간 0.031초

Flexible and Transparent CuO/Cu/CuO Electrodes Grown on Flexible PET Substrate by Continuous Roll-to-roll Sputtering for Touch Screen Panels Cells

  • Kim, Dong-Ju;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.217.2-217.2
    • /
    • 2014
  • We prepared a flexible and transparent CuO/Cu/CuO multilayer electrodes on a polyethylene terephthalate (PET) substrate using a specially designed roll-to-roll sputtering system at room temperature for GFF-type touch screen panels (TSPs). By the continuous roll-to-roll sputtering of the CuO and Cu layer, we fabricated a flexible CuO(150nm)/Cu(150nm)/CuO(150nm) multilayer electrodes with a sheet resistance of $0.289{\Omega}/square$, resistivity of $5.991{\times}10^{-23}{\Omega}-cm$, at the optimized condition without breaking the vacuum. To investigate the feasibility of the CuO/Cu/CuO multilayer as a transparent electrode for GFF-type TSPs, we fabricated simple GFF-type TSPs using the diamond patterned CuO/Cu/CuO electrode on PET substrate as function of mesh line width. Using diamond patterned CuO/Cu/CuO electrode of mesh line $5{\mu}m$ with sheet resistance of 38 Ohm/square, optical transmittance of 90% at 550 nm and an average transmittance of 89% at wavelength range from 380 to 780 nm, we successfully demonstrated GFF-type touch panel screens (TPSs). The successful operation of GFF-type TPSs with CuO/Cu/CuO multilayer electrodes indicates that the CuO/Cu/CuO multilayer is a promising transparent electrode for large-area capacitive-type TPSs due to its low sheet resistance and high transparency.

  • PDF

Electrochemical double layer capacitors with PEO and Sri Lankan natural graphite

  • Jayamaha, Bandara;Dissanayake, Malavi A.K.L.;Vignarooban, Kandasamy;Vidanapathirana, Kamal P.;Perera, Kumudu S.
    • Advances in Energy Research
    • /
    • 제5권3호
    • /
    • pp.219-226
    • /
    • 2017
  • Electrochemical double layer capacitors (EDLCs) have received a tremendous interest due to their suitability for diverse applications. They have been fabricated using different carbon based electrodes including activated carbons, single walled/multi walled carbon nano tubes. But, graphite which is one of the natural resources in Sri Lanka has not been given a considerable attention towards using for EDLCs though it is a famous carbon material. On the other hand, EDLCs are well reported with various liquid electrolytes which are associated with numerous drawbacks. Gel polymer electrolytes (GPE) are well known alternative for liquid electrolytes. In this paper, it is reported about an EDLC fabricated with a nano composite polyethylene oxide based GPE and two Sri Lankan graphite based electrodes. The composition of the GPE was [{(10PEO: $NaClO_4$) molar ratio}: 75wt.% PC] : 5 wt.% $TiO_2$. GPE was prepared using the solvent casting method. Two graphite electrodes were prepared by mixing 85% graphite and 15% polyvinylidenefluoride (PVdF) in acetone and casting n fluorine doped tin oxide glass plates. GPE film was sandwiched in between the two graphite electrodes. A non faradaic charge discharge mechanism was observed from the Cyclic Voltammetry study. GPE was stable in the potential windows from (-0.8 V-0.8 V) to (-1.5 V-1.5 V). By increasing the width of the potential window, single electrode specific capacity increased. Impedance plots confirmed the capacitive behavior at low frequency region. Galvanostatic charge discharge test yielded an average discharge capacity of $0.60Fg^{-1}$.

Highly Flexible Touch Screen Panel Fabricated with Silver Nanowire Crossing Electrodes and Transparent Bridges

  • Jeon, Youngeun;Jin, Han Byul;Jung, Sungchul;Go, Heungseok;Lee, Innam;Lee, Choonhyop;Joo, Young Kuil;Park, Kibog
    • Journal of the Optical Society of Korea
    • /
    • 제19권5호
    • /
    • pp.508-513
    • /
    • 2015
  • A capacitive-type touch screen panel (TSP) composed of silver nanowire (AgNW) crossing electrodes and transparent bridge structures was fabricated on a polycarbonate film. The transparent bridge structure was formed with a stack of Al-doped ZnO (AZO) electrodes and SU-8 insulator. The stable and robust continuity of the bridge electrode over the bridge insulator was achieved by making the side-wall slope of the bridge insulator low and depositing the conformal AZO film with atomic layer deposition. With an extended exposure time of photolithography, the lower part of the SU-8 layer around the region uncovered by the photomask can be exposed enough to the UV light scattered from the substrate. This leads to the low side-wall slope of the bridge insulator. The fabricated TSP sample showed a large capacitance change of 22.71% between with and without touching. Our work supplies the technological clue for ensuring long-term reliability to the highly flexible and transparent TSP made by using conventional fabrication processes.

고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계의 전기적 잡음 감소 및 자율 균형력 발생에 의한 강성 증가 (Electrical Noise Reduction and Stiffness Increase with Self Force-Balancing Effect in a High-Resolution Capacitive Microaccelerometer using Branched Finger Electrodes with High-Amplitude Sense Voltage)

  • 한기호;조영호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권4호
    • /
    • pp.169-174
    • /
    • 2002
  • This paper presents a high-resolution capactive microaccelerometer using branched finger electrodes with high-amplitude sense voltage. From the fabricated microacceleromcter, the total noise is obtained as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, while the conventional microaccelerometers have shown the noire level of 25~800 $\mu\textrm{g}$/√Hz. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-class based on deep RIE process of an SOI wafer. We reduce the electrical noise level by increasing the amplitude of AC sense voltage. The nonlinearity problem caused by the high-amplitude sense volage has been solved by a new electrode design of branched finger type, resulting in self force-balancing effects for the enhanced linearity and bandwidth. The fabricated microaccelerometer shows the electrical noise of 2.4 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is an order of magnitude reduction of the electrical noise of 24.3 $\mu\textrm{g}$/√Hz measured at 0.9V. For the sense voltage higher than 2V, the electrical noise of the microaccelerometer is lower than the voltage-independent mechanical noise of 11 $\mu\textrm{g}$/√Hz. Total noise, composed of the electrical noise and the mechanical noire, has been measured as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is 31% of the total noise of 28.6 $\mu\textrm{g}$/√Hz at the sense voltage 0.9V. The self force-balancing effect in the blanched finger electrodes increases the stiffness of the microaccelerometer from 1.1N/m to 1.61N/m as the sense voltage increases from 0V to 17.8V, thereby generating additional stiffness at the rate of 0.0016$\pm$0.0008 N/m/V$^2$.

인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과 (The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process)

  • 성두리;김대수
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.466-473
    • /
    • 2020
  • 직물집전체는 에너지 효율이 높은 담수화 방식인 축전식탈염(Capacitive deionization: CDI)시스템에서 유망한 전극 재료가 될 수 있다. 직물집전체의 매력적인 특징 중 하나는 인장강도가 강하다는 것인데, 기계적 강도가 약한 그라파이트 호일 전극의 대안이 될 수 있다. 또한 섬유적 특성으로 인하여 쉽게 형상을 만들 수 있고, 다공성 물질이라는 점과 섬유 간 공간은 수용성 매질의 흐름을 원활하게 해 준다. 본 연구에 사용된 섬유는 도전성 LM fiber와 carbon fiber를 사용한 방적사를 이용하여 직조 구조로 만들어졌으며, 인장강도는 319 MPa로 그라파이트 호일에 비해서 약 60 배 정도 더 강하다. 전극슬러리의 점도, 흡착전압, 공급액의 유량, 공급액의 농도를 변화시켜 가면서 염 제거효율을 측정하여 결과를 분석하였다. NaCl 200 mg/L, 20 ml/min, 흡착전압 1.5 V 조건에서, 단위 셀에서 43.9%, 100개의 셀을 적층한 모듈에서는 59.8%의 염 제거 효율을 각각 보였다. 단위 셀에서는 흡착전압이 1.3, 1.4, 1.5 V로 증가함에 따라 염 제거효율이 증가하다가 1.6과 1.7 V로 증가하면서 염 제거 효율은 감소하였다. 그러나 100 셀 적층 모듈에서는 1.5 V 이상의 전압에서도 염 제거효율이 완만한 증가세를 나타내었다. 공급액의 유량을 증가시켰을 때 염 제거율은 감소하였고, 또한 공급액의 농도를 증가시켰을 때에도 염 제거율은 감소하였다.

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.

헬스케어 가방의 ECG 센서 전극 위치에 따른 신호 분석 (Signal Analysis According to the Position of the ECG Sensor Electrode in Healthcare Backpack)

  • 이현석;정완영
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.402-408
    • /
    • 2014
  • Heart rate is one of the most important signal to monitor the health condition of the patient or exerciser. Various wearable devices have been developed for the continuous monitoring of ECG signal from human body during exercise. Among these, ECG chest belt has been widely used. However wearing chest belt with ECG sensor is uncomfortable in normal life due to the electrode contact between metal electrodes of ECG sensor and skin of the human body. So we develop the royal healthcare backpack that can measure ECG signal without skin contact by using capacitor-type ECG sensor. The position of the measurement point is critical to collect a clear ECG signal in the capacitive ECG measurement from backpack. Various tests were conducted to find the optimal ECG measurement position which has less noise and could get strong and clear ECG signal during exercise, walking, hiking, mountain climbing and cycling.

탄소나노섬유/코발트산화물 복합전극의 케폐시턴스 특성 (Capacitance Property for a Carbon-nanofiber/Cobalt Oxide Composite Electrode)

  • 윤여일;고장면
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.482-485
    • /
    • 2008
  • Composite electrode consisting of carbon nanofiber (CNF) and cobalt oxide was prepared for supercapacitor electrode, and its electrochemical property was investigated by means of cyclic voltammetry. Cyclic voltammetric results for the composite electrode showed it had specific capacitance value of 420 F/g at 5 mV/s, which was higher than capacitance value of 180 F/g for the bare CNF. It is concluded that the capacitive property of CNF can be improved by coating cobalt oxide on it to increase the surface area of cobalt oxide.

Quantitative identification of the fluxon-flow modes in a stack of intrinsic Josephson junctions of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+x}$ single crystals

  • Bae, Myung-Ho;Lee, Hu-Jong
    • Progress in Superconductivity
    • /
    • 제5권1호
    • /
    • pp.9-12
    • /
    • 2003
  • We observed the splitting of the fluxon-flow branches in the current-voltage characteristics of serially stacked intrinsic Josephson junctions (IJJs) formed in $Bi_2$$Sr_2$$CaCu_2$$O_{ 8+x}$ single crystals in the long-junction limit. Stacks of IJJs were sandwiched between two Au electrodes deposited on the top and the bottom of the stack using the ‘double-side cleaving technique’. In all the samples studied, the branch splitting started occurring for a dense fluxon configuration around 2 T and became more distinct in a higher magnetic field range. This observation can be explained in terms of switching between different Josephson fluxon modes in resonance with the collective plasma oscillations induced by both inductive and capacitive coupling between stacked IJJs. This is the first detailed and quantitative identification of the coherent flux-flow modes in stacked..

  • PDF

나노복합산화물 전극의 제조 및 수퍼커패시터로써의 응용 (Preparation of nano composite metal-oxide electrode and its application for superrcapacitor)

  • 김홍일;이주원;김상길;육경창;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.801-804
    • /
    • 2002
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nanostructured supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF