• Title/Summary/Keyword: Capacitive electrodes

Search Result 131, Processing Time 0.024 seconds

Development of a Novel Noncontact ECG Electrode by MEMS Fabrication Process

  • Mathias, Dakurah Naangmenkpeong;Park, Jaesoon;Kim, Eungbo;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.150-154
    • /
    • 2016
  • Contact electrodes pose threats like inflammation, metal poisoning, and allergic reaction to the user during long term ECG procedure. Therefore, we present a novel noncontact electrocardiographic electrode designed through microelectromechanical systems (MEMS) process. The proposed ECG electrode consists of small inner and large outer circular copper plates separated by thin insulator. The inner plate enables capacitive transduction of bio-potential variations on a subject’s chest into a voltage that can be processed by a signal processing board, whereas the outer plate shields the inner plate from environmental electromagnetic noise. The electrode lead wires are also coaxially designed to prevent cables from coupling to ground or electronic devices. A prototype ECG electrode has an area of about 2.324 cm2, is very flexible and does not require power to operate. The prototype ECG electrode could measure ECG at about 500 um distance from the subject’s chest.

Design, Fabrication and Micromachining Error Evaluation for a Surface-Micromachined Polysilicon Capacitice Accelerometer (표면미세가공기술을 이용한 수평감지방식의 정전용량형 다결정 실리콘 가속도계의 설계, 제작 및 가공 오차 영향 분석)

  • Kim, Jong-Pal;Han, Gi-Ho;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.529-536
    • /
    • 2001
  • We investigate a surface-micromachined capacitive accelerometer with the grid-type electrodes surrounded by a perforated proof-mass frame. An electromechanical analysis of the microaccelerometer has been performed to obtain analytical formulae for natural frequency and output sensitivity response estimation. A set of prototype devices has been designed and fabricated based on a 4-mask surface-micromachining process. The resonant frequency of 5.8$\pm$0.17kHz and the detection sensitivity of 0.28$\pm$0.03mV/g have been measured from the fabricated devices. The parasitic capacitance of the detection circuit with a charge amplifier has been measured as 3.34$\pm$1.16pF. From the uncertainty analysis, we find that the major uncertainty in the natural frequency of the accelerometer comes from the micromachining error in the beam width patterning process. The major source of the sensitivity uncertainty includes uncertainty of the parasitic capacitance, the inter-electrode gap and the resonant frequency, contributing to the overall sensitivity uncertainty in the portions of 75%, 14% and 11%, respectively.

Investigation of Spatial Distribution of Plasma Density between the Electrode and Lateral Wall of Narrow-gap CCP Source (좁은 간격 CCP 전원의 전극과 측면 벽 사이 플라즈마 분포)

  • Choi, Myung-Sun;Jang, Yunchang;Lee, Seok-Hwan;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.1-5
    • /
    • 2014
  • The plasma density distribution in between the electrode and lateral wall of a narrow gap CCP was investigated. The plasma density distribution was obtained using single Langmuir probe, having two peaks of density distribution at the center of electrode and at the peripheral area of electrodes. The plasma density distribution was compared with the RF fluctuation of plasma potential taken from capacitive probe. Ionization reactions obtained from numerical analysis using CFD-$ACE^+$ fluid model based code. The peaks in two region for plasma density and voltage fluctuation have similar spatial distribution according to input power. It was found that plasma density distribution between the electrode and the lateral wall is closely related with the local ionization.

Asymmetric Capacitive Sensor for On-line and Real-time Partial Discharge Detection in Power Cables

  • Changhee Son;Hyewon Cheon;Hakson Lee;Daekyung Kang;Jonghoo Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.219-222
    • /
    • 2023
  • Partial discharges (PD) have long been recognized as a major contributing factor to catastrophic failures in high-power equipment. As the demand for high voltage direct current (HVDC) facilities continues to rise, the significance of on-line and real-time monitoring of PD becomes increasingly prominent. In this study, we have designed, fabricated, and characterized a highly sensitive and cost-effective PD sensor comprising a pair of copper electrodes with different arc lengths. The key advantage of our sensor is its non-invasive nature, as it can be installed at any location along the entire power cable without requiring structural modifications. In contrast, conventional PD sensors are typically limited to installation at cable terminals or insulation joint boxes, often necessitating invasive alterations. Our PD sensor demonstrates exceptional accuracy in estimating PD location, with a success rate exceeding 95% in the straight sections of the power cable and surpassing 89% in curved sections. These remarkable characteristics indicate its high potential for realtime and on-line detection of PD.

The removal characteristics of dissolved solid in wastewater during a capacitive deionization process (축전식 탈염공정을 이용한 하수중의 용존염 제거특성 연구)

  • Shin, Kyong-Suk;Yi, Tae-Woo;Cha, Jae-Hwan;Lim, Yoon-Dae;Park, Seung-Kook;Kang, Kyoung-Suk;Song, Eui-Yeol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.151-160
    • /
    • 2014
  • Capacitive deionization(CDI) has many advantages over other desalination technologies due to its low energy consumption, less environmental pollution and relative low fouling potential. The objectives of this study are evaluate the performance of CDI which can be used for dissolved salts removal from sewage. To identify ion selectivity of nitrate and phosphate in multiionic solutions and adsorption/desorption performance related to applied potential, a series of laboratory scale experiments were conducted using a CDI unit cell with activated carbon electrodes. The CDI process was able to achieve more than 75 % TDS and $NO_3{^-}$, $NH_4{^+}$ removals, while phosphate removal was 60.8 % and is inversely related in initial TDS and $HCO_3{^-}$ concentration. In continuous operation, increasing the inner cell pressure and reduction of TDS removal ability were investigated which are caused by inorganic scaling and biofouling. However a relative mild cleaning solution(5 % of citric acid for calcium scaling and 500 mg/L of NaOCl for organic fouling) restored the electrochemical adsorption capacity of the CDI unit to its initial level.

High-resolution Capacitive Microaccelerometers using Branched finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계)

  • 한기호;조영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • This paper presents a navigation garde capacitive microaccelerometer, whose low-noise high-resolution detection capability is achieved by a new electrode design based on a high-amplitude anti-phase sense voltage. We reduce the mechanical noise of the microaccelerometer to the level of 5.5$\mu\textrm{g}$/(equation omitted) by increasing the proof-mass based on deep RIE process of an SOI wafer. We reduce the electrical noise as low as 0.6$\mu\textrm{g}$/(equation omitted) by using an anti-phase high-amplitude square-wave sense voltage of 19V. The nonlinearity problem caused by the high-amplitude sense voltage is solved by a new electrode design of branched finger type. Combined use of the branched finger electrode and high-amplitude sense voltage generates self force-balancing effects, resulting in an 140% increase of the bandwidth from 726㎐ to 1,734㎐. For a fixed sense voltage of 10V, the total noise is measured as 2.6$\mu\textrm{g}$/(equation omitted) at the air pressure of 3.9torr, which is the 51% of the total noise of 5.1$\mu\textrm{g}$/(equation omitted) at the atmospheric pressure. From the excitation test using 1g, 10㎐ sinusoidal acceleration, the signal-to-noise ratio of the fabricated microaccelerometer is measured as 105㏈, which is equivalent to the noise level of 5.7$\mu\textrm{g}$/(equation omitted). The sensitivity and linearity of the branched finger capacitive microaccelerometer are measured as 0.638V/g and 0.044%, respectively.

Performance Study of Membrane Capacitive Deionization Process Applied by Perfluoropolymer and Aminated Poly(ether imide) Ion Exchange Membranes (불소화고분자와 아민화된 폴리이서이미드 이온교환막을 적용한 축전식 탈염공정의 성능 연구)

  • Kim, Ji Seon;Jeong, Joo Hwan;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • To investigate the performance of the composite carbon electrodes which the ion exchange polymers were directly casted onto porous carbon electrode surfaces, the adsorption/desorption experiments were carried out by varying the feed concentration, feed flow rate, and desorption voltages for the NaCl solution. When the feed concentration was 100 mg/L, the increase of the adsorption time led to the increase of the salt removal due to the increase of the residence time inside the cell while the increase of the feed flow rate from 15 mL/min to 23 mL/min gave the decrease of the salt removal efficiency, 12% because of the short residence time. When the feed concentration was 200 mg/L, the salt removal was shown 10~15% low because of the incomplete desorption within the desorption intervals.

Application of Capacitive Deionization for Desalination of Mining Water (광산수의 탈염을 위한 축전식 탈염기술의 적용)

  • Lee, Dong-Ju;Kang, Moon-Sung;Lee, Sang-Ho;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • In this study, capacitive deionization (CDI) was introduced for desalination of mining water. Ion-exchange polymer coated carbon electrodes (IEE) were used in CDI to desalt mining water. The CDI performance using the IEE for desalination of mining water was carried out and then was compared with that using general carbon electrodes without ion-exchange polymer coating (GE). Moreover, to investigate the effect of the concentration of influent solutions on CDI performance, the CDI performance using the IEE for desalination of brackish water (NaCl 200 ppm) was also performed and analyzed. As a result, the higher salt removal efficiency, rate and the lower energy consumption in the CDI process using the IEE and mining water were obtained compared with those using the GE and mining water. It is mainly due to higher non-Faradaic current, low ohmic resistance of the influent, overlapping effect of electric double layers in micropore of the electrode. In addition, the CDI process using the IEE and brackish water shows much higher salt removal efficiency and lower salt removal rate than that using the IEE and mining water. This results from the lower concentration (i.e., higher ohmic resistance) and salt amount of the influent.

Development of Capacitive Type Humidity Sensor using Polyimide as Sensing Layer (폴리이미드를 감지층으로 이용한 정전용량형 습도센서 개발)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • In this paper, we fabricated a capacitive humidity sensor with an IDT(Interdigitated) electrode using commercial polyimide containing fluorine, and its properties were measured and analyzed. First, in order to analyze the composition of commercial polyimide, EDS analysis was performed after patterning process on a silicon wafer. The area of the humidity sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were $3{\mu}m$ each. The number of electrodes was 166 and the length of the electrode was 1.294mm for the sensitivity of the sensor. The fabricated sensor showed that the sensitivity was 24 fF/%RH, linearity <${\pm}2.5%RH$ and hysteresis <${\pm}4%RH$. As a result of measuring the capacitance value according to the frequency change, the capacitance vlaue decreased with increasing frequency. Capacitance deviations with 10kHz and 100kHz were measured as 0.3pF on average.

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF