• Title/Summary/Keyword: Capacitance component

Search Result 84, Processing Time 0.03 seconds

Design of an Energy Efficient XOR-XNOR Circuit (에너지 효율이 우수한 XOR-XNOR 회로 설계)

  • Kim, Jeong Beom
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.878-882
    • /
    • 2019
  • XOR(exclusive-OR)-XNOR(exclusive NOR) circuit is a basic component of 4-2 compressor for high performance arithmetic operation. In this paper we propose an energy efficient XOR-XNOR circuit. The proposed circuit is reduced the internal parasitic capacitance in critical path and implemented with 8 transistors. The circuit produces a perfect output signals for all input combinations. Compared with the previous circuits, the proposed circuit has a 14.5% reduction in propagation delay time and a 1.7% increase in power consumption. Therefore, the proposed XOR-XNOR is reduced power-delay- product (PDP) by 13.1% and energy-delay-product (EDP) by 26.0%. The proposed circuits are implemented with standard CMOS 0.18um technology and verified through SPICE simulation with 1.8V supply voltage.

Compact Tunable Bandstop Filter Using DOS Section (DGS 구조를 이용한 소형 가변 대역 억제 필터)

  • Sung, Young-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1333-1338
    • /
    • 2008
  • In this paper, RF varactor diode are applied to the design of miniaturized and tunable bandstop filter. The proposed bandstop filter is based on a Defected Ground Structure(DGS) section topology. The designed tunable bandstop filter can achieve a significant size reduction by with loading capacitance component of varactor diode. It is observed from the measured results that the proposed tunable bandstop filter shows a wide tuning range of 42.9 % from 1.01 GHz to 1.99 GHz. The rejection level in the stopband is higher as the number of DGS section increases. In case of the proposed tunable bandstop filter with two DGS sections, the rejection level of the filter is better than 20 dB in the stopband during the tuning. In this case, the maximum insertion loss in the lower passband is 0.5 dB.

Basic Study on RF Characteristics of Thin-Film Transmission Line Employing ML/CPW Composite Structure on Silicon Substrate and Its Application to a Highly Miniaturized Impedance Transformer

  • Jeong, Jang-Hyeon;Son, Ki-Jun;Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • A thin-film transmission line (TFTL) employing a microstrip line/coplanar waveguide (ML/CPW) was fabricated on a silicon substrate for application to a miniaturized on-chip RF component, and the RF characteristics of the device with the proposed structure were investigated. The TFTL employing a ML/CPW composite structure exhibited a shorter wavelength than that of a conventional coplanar waveguide and that of a thin-film microstrip line. When the TFTL with the proposed structure was fabricated to have a length of ${\lambda}/8$, it showed a loss of less than 1.12 dB at up to 30 GHz. The improvement in the periodic capacitance of the TFTL caused for the propagation constant, ${\beta}$, and the effective permittivity, ${\varepsilon}_{eff}$, to have values higher than those of a device with only a conventional coplanar waveguide and a thin film microstrip line. The TFTL with the proposed structure showed a ${\beta}$ of 0.53~2.96 rad/mm and an ${\varepsilon}_{eff}$ of 22.3~25.3 when operating from 5 to 30 GHz. A highly miniaturized impedance transformer was fabricated on a silicon substrate using the proposed TFTL for application to a low-impedance transformation for broadband. The size of the impedance transformer was 0.01 mm2, which is only 1.04% of the size of a transformer fabricated using a conventional coplanar waveguide on a silicon substrate. The impedance transformer showed excellent RF performance for broadband.

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

Harmonic Analysis for Traction Power Supply System Using Four-Port Network Model (6단자망 회로모델을 이용한 전기철도 급전시스템의 고조파 해석)

  • Chang, Sang-Hun;O, Gwang-Hye;Kim, Ju-Rak;Kim, Jeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.255-261
    • /
    • 2002
  • Recently, traction motors in trains are supplied with single phase a.c. power. After this power is converted to d.c. power, it is inverted to three phase power to operate traction motors. As going through the process of the conversion, harmonic current is generated in train. The method of conventional analysis on harmonics, studied by RTRI, is modeled with equivalent circuit of ac AT-fed electric railroad system using by the distributed constant circuit. However, this circuit as two-port network model has some difference in comparison with real system. The reason why the conventional method is different from the real system is that the conventional method dose not include three conductor groups, that is catenary, rail, and feeder, and admittance between the conductors for line capacitance. Therefore, this method has a little error. This paper proposes new method to more effectively estimate Harmonic current. In this method, numerous components in electric railway are categorized and each component is defined as a four- port network model. The equivalent circuit for the entire power supply system is also described into a four-port network model with connections of these components. In order to evaluate the efficiency and the accuracy of a proposed method, it is compared with values measured in Kyung-Bu high speed line and ones calculated by the conventional method.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

Electrochemical Capacitors (전기화학 커패시터)

  • Kim, Jong-Huy
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • In general, the battery and the(electric) condenser are pictured as electrical energy storage devices. Although there were lots of inventions and utilizations of morden conveniences according to enormous growth of the science and technologies after the Industrial Revolution, a speed of technology development on these devices being closely used in civilized human lives and many electric or electronic systems as a core component are relatively slower to the other fields of technologies. Nevertheless, based on a remarkable progress of the material science and technologies for the last ten years, a new type of electrical energy storage device so called as 'electrochemical capacitors' are being developed and used practically. The electrochemical capacitors exhibit their own characteristics of much enhanced capacitance over the conventional condensers and also distinctively exhibit a longer lift time and higher power capability that the nickel hydrogen batteries and secondary batteries such as lithium ion and polymer batteries does not show up so for. Hence, in this paper, it is intended to introduce a fundamental understanding and updated technology trends on the electrochemical capacitors.

A Design of 1.42 - 3.97GHz Digitally Controlled LC Oscillator (1.42 - 3.97GHz 디지털 제어 방식 LC 발진기의 설계)

  • Lee, Jong-Suk;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.23-29
    • /
    • 2012
  • The LC-based digitally controlled oscillator (LC-DCO), a key component of the all digital phase locked loop (ADPLL), is designed using $0.18{\mu}m$ RFCMOS process with 1.8 V supply. The NMOS core with double cross-coupled pair is chosen to realize wide tuning range, and the PMOS varactor pair that has small capacitance of a few aF and the capacitive degeneration technique to shrink the capacitive element are adopted to obtain the high frequency resolution. Also, the noise filtering technique is used to improve phase noise performance. Measurement results show the center frequency of 2.7 GHz, the tuning range of 2.5 GHz and the high frequency resolution of 2.9 kHz ~7.1 kHz. Also the fine tuning range and the current consumption of the core could be controlled by using the array of PMOS transistors using current biasing. The current consumption is between 17 mA and 26 mA at 1.8V supply voltage. The proposed DCO could be used widely in various communication system.

The Bandpass Filter with Transmission Zero Using . the Effect of Effective Inductance and Multi-layer PCB (유효 인덕턴스 효과와 적층 PCB를 이용한 하나의 전송 영점을 갖는 대역 통과 필터)

  • Kim, Yu-Seon;Nam, Hun;Lee, Geon-Cheon;Seo, In-Jong;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1089-1095
    • /
    • 2006
  • In this paper, the circuit analysis of three-dimensional bandpass filter with transmission zero in multi-layer printed circuit board is presented. The equivalent circuit of bandpass filter is evaluated by microwave network analysis. Compare to the established paper that have configured the circuit model of filter except the effect of distribute element, the proposed model can include the effect. As a result, the multi-layer PCB bandpass filter with transmission zero has designed by extracting mutual capacitance from electrical component inside inductor. The structure size is only $10mm{\times}20mm{\times}1.251mm$. Measured data of the bandpass filter indicate 1.9 dB of insertion loss and 28 dB of return loss at the center frequency of 1.84 GHz, as well as 43 dB attenuation at the refraction frequency of 2.78 GHz.

Voltage-Controlled Artificial Transmission Line Employing Periodically Loaded Diodes for Application to On-Chip Matching Components on MMIC (MMIC용 온칩 정합 소자에의 응용을 위한 주기적 배열 다이오드 구조를 이용한 전압 제어형 전송 선로)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • In this paper, we propose VATL(Voltage-controlled Artificial Transmission Line) employing periodically loaded diodes for application to on-chip matching components on MMIC. Compared with conventional microstrip line, the VATL showed a much shorter wave length due to periodic capacitance of diodes, and the characteristic impedance of the VATL was easily controlled bγ changing supplied voltage. Concretely, the characteristic impedance of the VATL was changed from $80{\sim}20{\Omega}$ in a range of $0{\sim}1.05V$ and the VATL showed a wavelength of 1.5mm at 20GHz, while conventional microstrip line showed a wavelength of 5.3mm at the same frequency. Using the VATL, a ${\lambda}/4$ impedance transformer was fabricated on GaAs MMIC for application to on-chip matching components on MMIC. Using the ${\lambda}/4$ impedance transformer made it possible to perform impedance matching between RF components with various characteristic impedance of $30{\sim}100{\Omega}$ by adjusting applied Voltage.