• 제목/요약/키워드: Capacitance Sensor

검색결과 305건 처리시간 0.03초

감지막으로 Ta2O5를 이용한 정전용량형 수소 가스센서 (Capacitive-type Hydrogen Gas Sensor Using Ta2O5 as Sensitive Layer)

  • 최제훈;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.882-887
    • /
    • 2013
  • We investigated a SiC-based hydrogen gas sensor with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications. The sensor was fabricated by Pd/$Ta_2O_5$/SiC structure, and a thin tantalum oxide ($Ta_2O_5$) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature as well as high permeability for hydrogen gas. In the experiment, dependence of I-V characteristics and capacitance response properties on hydrogen gas concentrations from 0 to 2,000 ppm was analyzed at room temperature to $500^{\circ}C$. As the result, our sensor exploiting a $Ta_2O_5$ dielectric layer showed possibilities with regard to use in hydrogen gas sensors for high-temperature applications.

Dual-Sensitivity Mode CMOS Image Sensor for Wide Dynamic Range Using Column Capacitors

  • Lee, Sanggwon;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.85-90
    • /
    • 2017
  • A wide dynamic range (WDR) CMOS image sensor (CIS) was developed with a specialized readout architecture for realizing high-sensitivity (HS) and low-sensitivity (LS) reading modes. The proposed pixel is basically a three-transistor (3T) active pixel sensor (APS) structure with an additional transistor. In the developed WDR CIS, only one mode between the HS mode for relatively weak light intensity and the LS mode for the strong light intensity is activated by an external controlling signal, and then the selected signal is read through each column-parallel readout circuit. The LS mode is implemented with the column capacitors and a feedback structure for adjusting column capacitor size. In particular, the feedback circuit makes it possible to change the column node capacitance automatically by using the incident light intensity. As a result, the proposed CIS achieved a wide dynamic range of 94 dB by synthesizing output signals from both modes. The prototype CIS is implemented with $0.18-{\mu}m$ 1-poly 6-metal (1P6M) standard CMOS technology, and the number of effective pixels is 176 (H) ${\times}$ 144 (V).

CMOS Image Sensor with Dual-Sensitivity Photodiodes and Switching Circuitfor Wide Dynamic Range Operation

  • Lee, Jimin;Choi, Byoung-Soo;Bae, Myunghan;Kim, Sang-Hwan;Oh, Chang-Woo;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.223-227
    • /
    • 2017
  • Conventional CMOS image sensors (CISs) have a trade-off relationship between dynamic range and sensitivity. In addition, their sensitivity is determined by the photodiode capacitance. In this paper, CISs that consist of dual-sensitivity photodiodes in a unit pixel are proposed for achieving wide dynamic ranges. In the proposed CIS, signal charges are generated in the dual photodiodes during integration, and these generated signal charges are accumulated in the floating-diffusion node. The signal charges generated in the high-sensitivity photodiodes are transferred to the input of the comparator through an additional source follower, and the signal voltages converted by the source follower are compared with a reference voltage in the comparator. The output voltage of the comparator determines which photodiode is selected. Therefore, the proposed CIS composed of dual-sensitivity photodiodes extends the dynamic range according to the intensity of light. A $94{\times}150$ pixel array image sensor was designed using a conventional $0.18{\mu}m$ CMOS process and its performance was simulated.

Linear-logarithmic Active Pixel Sensor with Photogate for Wide Dynamic Range CMOS Image Sensor

  • Bae, Myunghan;Jo, Sung-Hyun;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.79-82
    • /
    • 2015
  • This paper proposes a novel complementary metal oxide semiconductor (CMOS) active pixel sensor (APS) and presents its performance characteristics. The proposed APS exhibits a linear-logarithmic response, which is simulated using a standard $0.35-{\mu}m$ CMOS process. To maintain high sensitivity and improve the dynamic range (DR) of the proposed APS at low and high-intensity light, respectively, two additional nMOSFETs are integrated into the structure of the proposed APS, along with a photogate. The applied photogate voltage reduces the sensitivity of the proposed APS in the linear response regime. Thus, the conversion gain of the proposed APS changes from high to low owing to the addition of the capacitance of the photogate to that of the sensing node. Under high-intensity light, the integrated MOSFETs serve as voltage-light dependent active loads and are responsible for logarithmic compression. The DR of the proposed APS can be improved on the basis of the logarithmic response. Furthermore, the reference voltages enable the tuning of the sensitivity of the photodetector, as well as the DR of the APS.

일회용 마스크에 장착을 위한 레이저 기반 그래핀 습도센서 제작에 관한 연구 (A Study on the Fabrication of Laser-Induced Graphene Humidity Sensor for Mounting on a Disposable Mask)

  • 이준욱;신윤지;양혜정;신보성
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.693-699
    • /
    • 2020
  • 355nm UV pulse laser is irradiated on the surface of polyimide (PI) by LDW (Laser Direct Writing) method to produce a high sensitivity flexible humidity sensor using a simple one-step process. The LDW method continuously investigates 2-D CAD data using a galvano scanner and an F-lens. This method is non-contact, so it minimizes physical strain on the PI. Laser-induced graphene (LIG) produced by lasers has a high surface area due to its high flexibility and numerous pores and oxidizers compared to conductors. For this reason, it is highly useful as a flexible humidity sensor. The humidity sensor produced in this study was attached to the inside of a mask filter, which has become a hot topic recently, and its applicability was confirmed.The measurement of humidity measured the sensitivity, reactivity, stability and recovery behavior of the sensor by measuring changes in capacitance and resistance.

다중벽 탄소나노튜브를 이용한 철근 부식 검출 센서 제작 연구 (A study on the Corrosion Detection Sensor using Multi-Wall Carbon Nanotube)

  • 박수빈;김성연;이수정;최문정;홍영준;권성준;유봉영;윤상화
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.194-199
    • /
    • 2021
  • In this study, rebar corrosion detection sensor was fabricated using multi-walled carbon nanotubes (MWCNTs). MWCNTs were pre-treated in the acid electrolytes to attach the carboxylic acid to the surface of MWCNTs. The fabricated sensor was attached on the surface of rebar and it detected the corrosion of steel using LCR meter with variation of capacitance. The surface morphology and electrical properties were characterized using scanning electron microscope (SEM) and electrical test equipment, respectively. To verify the corrosion detection characteristics, comparison experiment using plastic bar was performed. Moreover, mechanism of corrosion detection sensor was discussed.

정전용량센서를 이용한 소형공작기계의 기하학적 오차측정 (Measurement of Geometric Errors in a Miniaturized Machine Tool Using Capacitance Sensors)

  • 권성환;이재하;리우위;임창범;양승한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1733-1736
    • /
    • 2005
  • Many studies have been carried out to produce 3D features in the size range between $10{\mu}m\~10,000{\mu}m$, called Meso-scale. If these miniaturized systems have high relative accuracy and good volumetric utilization, it is possible to manufacture more complex and accurate shapes with various materials as well as there are advantages of reducing energy, space and resources. Due to imperfect components and misalignment in assembly, it is necessary to assess the accuracy of the miniaturized system itself to obtain high relative accuracy. Laser interferometers are widely used to measure geometric errors called as quasi-static errors. For miniaturized system, however, it is difficult to install the required accessories such as optics and the measuring range is limited because of the size of the system and also this method is very expensive. Moreover, it is impossible to measure each error component simultaneously. A new system to measure simultaneously multiple geometric errors is proposed using capacitance sensors. Each error was measured using capacitance sensors and a measurement algorithm was mathematically derived. The experiments show that the proposed measurement system can be used effectively to assess the accuracy of miniaturized system at a low cost.

  • PDF

전기용량성 섬유 압력센서를 이용한 호흡측정 시스템 (Respiration Measurement System using Textile Capacitive Pressure Sensor)

  • 민세동;윤용현;이충근;신항식;조하경;황선철;이명호
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.58-63
    • /
    • 2010
  • In this paper, we proposed a wearable respiration measurement system with textile capacitive pressure sensor. Belt typed textile capacitive pressure sensor approach of respiration measurement, from which respiration signatures and rates can be derived in real-time for long-term monitoring, are presented. Belt typed textile capacitive pressure sensor has been developed for this measurement system. the distance change of two plates by the pressure of motion has been used for the respiration measurement in chest area. Respiration rates measured with the textile capacitive pressure sensor was compared with standard techniques on 8 human subjects. Accurate measurement of respiration rate with developed sensor system is shown. The data from the method comparison study is used to confirm theoretical estimates of change in capacitance by the distance change. The current version of respiratory rate detection system using textile capacitive pressure sensor can successfully measure respiration rate. It showed upper limit agreement of $3.7997{\times}10^{-7}$ RPM, and lower limit of agreement of $-3.8428{\times}10^{-7}$ RPM in Bland-Altman plot. From all subject, high correlation were shown(p<0.0001). The proposed measurement method could be used to monitor unconscious persons, avoiding the need to apply electrodes to the directly skin or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range and quality of the rate-finding, broadening the potential application areas of this technology.

건식법에 의해 제조된 내열성 폴리이미드박막의 열적특성 및 습도감지특성 (Thermal and Humidity Sensing Properties of Heat Resistant Polyimide Thin Film Manufactured by Dry Process)

  • 임경범;김기환;황선양;김종윤;황명환
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1080-1086
    • /
    • 2007
  • The aim of this paper is to establish the optimum fabrication condition of specimens, using the Vapor Deposition Polymerization Method(VDPM), which is one of modesto prepare functional organic thin films using a dry process, and to develop a thin film type humidity sensor which has good humidity sensitive characteristics. The inner part of the film became denser and roughness of the film surface eased as curing temperature increased so that thickness of the film could be made uniform. This also shows the appropriate curing temperature was $250^{\circ}C$. The basic structure of the humidity sensor is a parallel capacitor which consists of three layers of Aluminum/Polyimide/Aluminum. The result of SEM and AFM measurement shows that the thickness of PI thin films decreased and the refraction increased as curing temperature increased, which indicates that a capacitance-type humidity sensor utilizing polyimide thin film is fabricated on a glass substrate. The characteristics of fabricated samples were measured under various conditions, and the samples had linear characteristics in the range of 20-80 %RH, independent of temperature change, and low hysteresis characteristic.

유수분리기용 정전용량형 센서의 성능향상에 관한 연구 (Enhancement in the Performance of Capacitive Sensor for Oily Water Separator)

  • 제우성;김경우;권휴상
    • 한국정보통신학회논문지
    • /
    • 제10권10호
    • /
    • pp.1835-1841
    • /
    • 2006
  • 해양환경 규제 MEPC의 규제 강화로 인하여 더욱 정밀하고, 신뢰성을 확보한 빌지분리 센서 시스템이 필요하다. 빌지 분류기를 설계 제작하기 위해서는 기름과 물을 구별하는 정밀한 유수분리 레벨센서가 필요하다. 이를 위하여 본 연구에서는 정전용량형 레벨센서의 특성 파악을 위해 3차원 시뮬레이션을 수행하여 특성을 파악하였으며, 이를 토대로 레벨센서의 설계시 주요한 설계인자를 추출하였다. 동작회로를 Digital 회로로 구성함으로써, 정전용량형 센서의 원천적인 기생커패시턴스 문제를 해결하였으며, 실험장치를 구성한 후 실험을 수행하였다. 실험 결과를 보면 노이즈에는 강인해졌음을 알 수 있었다. 그리고 추출한 정전용량형 레벨센서의 설계인자를 이용하여 정밀도를 향상시키기 위한 연구가 향후에 진행 될 필요성이 있다.