• Title/Summary/Keyword: Cantilever Plate

Search Result 116, Processing Time 0.024 seconds

A Study on the Design of a Double Cantilever Structure Friction Tester for Precision Friction Measurement (정밀 마찰측정을 위한 이중 캔틸레버 구조 마찰시험기의 설계에 관한 연구)

  • Kang, Won-Bin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.125-131
    • /
    • 2018
  • A precision tribometer consisting of a cantilever was designed to measure frictional forces in the micro-Newton range. As frictional forces are measured based on the bending of the cantilever, vibration of the cantilever is the most significant factor affecting the quality of the friction measurement. Therefore, improved design of the tribometer with double cantilevers and a connecting plate that united the two cantilevers mechanically was suggested. For the verification of the modified design of the tribometer, numerical analysis and experiments were conducted. Examination using the finite element method revealed that the tribometer with a double cantilever and a connecting plate exhibited faster damping characteristics than the tribometer with a single cantilever. In the experiment, effectiveness of the double cantilever and connecting plate for vibration reduction was also confirmed. Vibration of the tribometer with double cantilever decreased eight times faster than that of the tribometer with a single cantilever. The faster damping of the double cantilever design is attributed to the mechanical interaction at the contacting surfaces between the cantilever and the connecting plate. Tribotesting using the tribometer with a single cantilever resulted in random fluctuation of frictional forces due to the stick-slip behavior. However, using the tribometer with a double cantilever and connecting plate for the tribotest gave relatively uniform and steady measurement of frictional forces. Increased stiffness owing to using a double cantilever and mechanical damping of the connecting plate were responsible for the stable friction signal.

Natural Vibration Characteristics of Cantilever Plate Partially Submerged into Water (수중에 부분 몰수된 외팔보의 고유진동 특성)

  • Kwak, Moon K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.229-230
    • /
    • 2012
  • The free flexural vibration of a cantilever plate partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The virtual mass matrix is derived by solving the boundary-value problem related to the fluid motion using elliptical coordinates. The introduction of the elliptical coordinates naturally leads to the use of the Mathieu function. Hence, the virtual mass matrix which reflects the effect of the fluid on the natural vibration characteristics is expressed in analytical form in terms of the Mathieu functions. The virtual mass matrix is then combined with the dynamic model of a thin rectangular plate obtained by using the Rayleigh-Ritz method. This combination is used to analyze the natural vibration characteristics of a partially submerged cantilever plate qualitatively. Also, the non-dimensionalized added virtual mass incremental factors for a partially submerged cantilever plate are presented to facilitate the easy estimation of natural frequencies of a partially submerged cantilever plate. The numerical results validate the proposed approach.

  • PDF

A Study on Flow Induced Vibration of Cantilever Plate with Angle of Attack (받음각을 갖는 평판보의 유동 여기진동에 관한 연구)

  • 이기백;손창민;김봉환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1919-1932
    • /
    • 1991
  • Experimental studies are conducted to investigate the Flow-Induced Vibration mechanism for cantilever plate model with the angle of attack (.alpha.=10.deg., 20.deg., 30.deg.). Research is divided into two parts. First, the flow fields around two dimensional flat plate model are investigated using LDV system. Second, the vortex shedding frequency and response spectra of cantilever plate are obtained experimentally using gap sensor and hot wire anemometer. Finite element method program was used in order to predict the flow field and pressure field around thin flat plate. And some predicted results were compared with the experimental data. The aspect ration of test model is d/t=25 (d; width, t; thickness). From the measurement of the flow field it was found that in the case of small inclined (.alpha.=10.deg., 20.deg.) relatively, the separated boundary layer at sharp leading edge developed smoothly downstream. With increasing the angle of attack of the plate, stagnation region was appeared on the back side of the plate and separated boundary layer was extended downstream. These trends are a good agreement with the computational results. It was found by analysis of response spectra of cantilever plate that the influences of vortex shedding frequency were important at the large of attack (.alpha.=30.deg.), and two peak values appear in entire test model at 24Hz, 150Hz.

Development and Evaluation of Broadband Piezoelectric Harvesters using a Cantilever-Type Module (캔틸레버형 모듈을 이용한 광대역 압전 하베스터 개발 및 평가)

  • Park, Buem-Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.261-265
    • /
    • 2020
  • In cantilever type piezoelectric energy harvester, the amount of power generation decreases rapidly when outside a certain frequency. The thickness and weight of the cantilever metal plate were modified to develop cantilevers that could produce high power over a wide frequency range. The thicker the cantilever, the higher the power in the higher frequency range. As the weight of the mass increased, the cantilever tended to generate higher power, and the frequency band decreased. A 0.6 mm metal plate cantilever that had a mass of 3.3 g generated power that exceeded 3 mW within the 91-102 Hz range, with average and output values of 9.484 mW and 20.748 mW, respectively, at 99 Hz.

Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to in-plane force

  • Takahashi, Kazuo;Wu, Mincharn;Nakazawa, Satoshi
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.939-953
    • /
    • 1998
  • Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to an in-plane sinusoidally varying load applied along the free end are analyzed. The thin plate small deflection theory is used. The Rayleigh-Ritz method is employed to solve vibration and buckling of the plate. The dynamic stability problem is solved by using the Hamilton principle to drive time variables. The resulting time variables are solved by the harmonic balance method. Buckling properties and natural frequencies of the plate are shown at first. Unstable regions are presented for various loading conditions. Simple parametric resonances and combination resonances with sum type are obtained for various loading conditions, static load and damping.

Active Vibration Control of Cantilever Plate Equipped with MFC Actuators (MFC 액츄에이터가 부착된 외팔 평판의 능동 진동 제어)

  • Kwak, Moon K.;Yang, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.533-534
    • /
    • 2013
  • This paper is concerned with the active vibration control of rectangular plate equipped with MFC actuators. To this end, the dynamic model of the rectangular plate bonded with MFC sensors and actuators was derived by means of the Rayleigh-Ritz method. The MFC actuator and sensor were modeled based on the pin-force assumption. The theoretical model was then validated experimentally. The multiinput and multi-output (MIMO) Positive Position Feedback (PPF) controller was designed based on the natural mode shapes and implemented using dSpace system and Simulink. The proposed control algorithm was applied to the cantilever plate having two MFC wafers having both sensor and actuator. Numerical and experimental investigations were carried out. Both theoretical and experimental result shows that the proposed control algorithm can effectively suppress vibrations of cantilever plate.

  • PDF

Dynamic Analysis of Cantilever Plates Undergoing Translationally Oscillating Motion (면내 방향 맥동 운동하는 외팔평판의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.366-371
    • /
    • 2001
  • Dynamic stability of an oscillating cantilever plate is investigated in this paper. The equations of motion include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the multiple scale perturbation method is employed to obtain a stability diagram. The tability diagram shows that relatively large unstable regions exist when the frequency of oscillation is near twice the frequencies of the 1st torsion natural mode and the 1st chordwide bending mode.

  • PDF

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.785-791
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed.

Optimal Ply Design of Laminated Composite Cantilever plate Considering Vibration (진동을 고려한 복합적층 외팔평판의 최적적층설계)

  • Gu, K.M.;Noh, Y.H.;Kim, D.Y.;Hong, D.K.;Ahn, C.W.;Han, G.J.;Park, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1660-1665
    • /
    • 2003
  • On this study, we improved the efficiency applying algorithm that is repeatedly using orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized 1st natural frequency of CFRP laminated composite cantilever plate by each aspect ratio. A finite element analysis on the CFRP laminated composite cantilever plate using orthogonal array is carried out, and the results are compared with those obtained by modal testing.

  • PDF

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.268-273
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed

  • PDF