• Title/Summary/Keyword: Cantilever Beam Specimen

Search Result 64, Processing Time 0.038 seconds

Convergence Study on Fracture at Joint Using Adhesive at Inhomogeneous Materials Bonded with CFRP (CFRP와 결합된 이종재료들에서의 접착제를 이용한 접합부의 파손에 관한 융합 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.151-156
    • /
    • 2018
  • In this study, CFRP and metal or nonmetal were bonded with adhesive and the fracture study on this material was carried out. CFRP at the upper side of specimen and metal or nonmetal were assigned at the lower side of specimen by using DCB specimen as the analysis condition. And it was desribed that the structural adhesive were bonded between both upper and lower sides. As this analysis result, the least equivalent stress was shown at the specimen bonded with aluminium. The maximum shear stress was shown to become lowest at the de-bonded CFRP specimen when titanium was used. In conclusion, it was shown that the deformation of specimen became lowest when titanium was used. On the basis of this study result, the esthetic sense can be shown as the fracture data of bonded interface using adhesive are grafted onto the real life.

A Study on the Micro-fracture Behavior of the MEMS Material at Elevated Temperature (고온용 MEMS 재료의 마이크로 파괴거동에 관한 연구)

  • Woo, Byung-Hoon;Bae, Chang-Won;Moon, Kyong-Man;Bae, Sung-Yeol;Higo, Yakichi;Kim, Yun-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.550-555
    • /
    • 2007
  • The effective fracture toughness testing of materials intended for application in Micro Electro Mechanical Systems (MEMS) devices is required in order to improve understanding of how micro sized material used in device may be expected to perform upon the micro scale. ${\gamma}$-TiAl based materials are being considered for application in MEMS devices at elevated temperatures. Especially, in Alloy 4, both ${\alpha}_2$ and ${\gamma}$ lamellae were altered markedly in 3,000 h, $700^{\circ}C$ exposure. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. The materials were examined 2 types Alloy 4 on heat exposed specimen($700^{\circ}C$, 3,000 h) and no heat exposed one. Micro sized cantilever beams were prepared mechanical polishing on both side at $25{\sim}30{\mu}m$ and electro final stage polishing to observe lamellar orientation of same colony with EBSD (Electron Backscatter Diffraction Pattern). Through lamellar orientation as inter-lamellae or trans-lamellae, Cantilever beam was fabricated with Focused Ion Beam(FIB). The directional behavior of the lamellar structure was important property in single material, because of the effects of the different processing method and variations in properties according to lamellar orientation. In MEMS application, it is first necessary to have a reliable understanding of the manufacturing methods to be used to produce micro structure.

Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam (접착제로 접합된 이중외팔보 알루미늄폼의 파괴 거동에 관한 연구)

  • Bang, Hye-Jin;Lee, Sang-Kyo;Cho, Chongdu;Cho, Jae-Ung;Choi, Hae-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.521-526
    • /
    • 2014
  • In this study, closed-cell aluminum foam with an initial crack was investigated to produce an axial load-time graph. Using the 10-kN Landmarks of MTS Corporation, a 15-mm/min velocity of mode I shape was applied to the aluminum foam specimen using the displacement control method. ABAQUS 6.10 simulation was used to model and analyze the identical model in three dimensions under conditions identical to those of the experiment. The energy release rate was calculated on the basis of an axial load-displacement graph obtained from the experiment and a transient image of the crack length, and then an FE model was analyzed on the basis of this fracture energy condition. The relation between load and displacement was discussed; it was found that the aluminum foam deformed somewhat less than the adhesive layer owing to the difference in elastic modulus.

A Study on the Effect of Adhesion Condition on the Mode I Crack Growth Characteristics of Adhesively Bonded Composites Joints (복합재 접착 체결 구조의 접착 상태가 모드 I 균열 성장 특성에 미치는 영향에 대한 연구)

  • No, Hae-Ri;Jeon, Min-Hyeok;Cho, Huyn-Jun;Kim, In-Gul;Woo, Kyeong-Sik;Kim, Hwa-Su;Choi, Dong-Su
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.323-329
    • /
    • 2021
  • In this paper, the characteristics of fracture in mode I loading were analyzed for adhesively bonded joints with non-uniform adhesion. The Double Cantilever Beam test was performed and mode I fracture toughness was obtained. In the case of non-uniform adhesively bonded joints, the stable crack growth sections and unstable crack growth section were shown. The fracture characteristics of each section were observed through the load-displacement curve of the DCB test and the fracture surface of the specimen. Finite Element Analysis was performed at the section based on segmented section by crack length measured through the test and using the mode I fracture toughness of each section. Through DCB test results and finite element analysis results, it was confirmed that the fracture behavior of specimens with non-uniform adhesion can be simulated.

The Characteristics for Mode I Interlaminar and Intralaminar Fractures of Cross-Ply Carbon/Epoxy Composite Laminates Based on Energy Release Rate (변형률 에너지 해방률에 기반한 Carbon/Epoxy 직교적층판의 모드 I 층간 및 층내 파괴 특성 분석)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Woo, Kyeong-Sik
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • This paper describes the characteristics for mode I interlaminar and intralaminar fractures of cross-ply carbon/epoxy composite laminates. We obtained mode I interlaminar fracture toughness and mode I intralaminar fracture toughness based on energy release rate and Finite Element Analysis (FEA). For this purpose, the Double-Cantilever Beam (DCB) test and FEA were performed for cross-ply DCB specimens. Also, the behavior of load-displacement curve at the interlaminar and intralaminar crack was analyzed. The results show that mode I intralaminar fracture toughness was lower than mode I interlaminar fracture toughness in the cross-ply DCB specimen.

Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications (FOWLP 적용을 위한 Cu 재배선과 WPR 절연층 계면의 정량적 계면접착에너지 측정방법 비교 평가)

  • Kim, Gahui;Lee, Jina;Park, Se-hoon;Kang, Sumin;Kim, Taek-Soo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • The quantitative interfacial adhesion energy measurement method of copper redistribution layer and WPR dielectric interface were investigated using $90^{\circ}$ peel test, 4-point bending test, double cantilever beam (DCB) measurement for FOWLP Applications. Measured interfacial adhesion energy values of all three methods were higher than $5J/m^2$, which is considered as a minimum criterion for reliable Cu/low-k integration with CMP processes without delamination. Measured energy values increase with increasing phase angle, that is, in order of DCB, 4-point bending test, and $90^{\circ}$ peel test due to increasing roughness-related shielding and plastic energy dissipation effects, which match well interfacial fracture mechanics theory. Considering adhesion specimen preparation process, phase angle, measurement accuracy and bonding energy levels, both DCB and 4-point bending test methods are recommended for quantitative adhesion energy measurement of RDL interface depending on the real application situations.

Evaluation of Mode I Interlaminar Fracture Toughness for Carbon Fabric/Expocy Composite for Tilting Train Carbody (틸팅열차 차체용 탄소섬유직물/에폭시 복합재의 모우드 I 층간파괴인성 평가)

  • Heo KWang-Su;Kim Jeong-Seok;Yoon Sung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.573-580
    • /
    • 2005
  • Model I interlaminar fracture behaviors of the carbon/epoxy composite, one of the candidate composites for a tilting train carbody, were investigate by the use of DCB(Double cantilever beam) specimens. These specimens were made of CF3327 plain woven fabric with epoxy resin, and an artificial starter delamination was fabricated by inserting Teflon film with the thickness of $12.5{\mu}m$ of $25.0{\mu}m$ at the one end of the specimen. Mode I interlaminar fracture toughness was evaluated for the specimens with the different thickness of an inserter. Also delamination propagating behaviors and interlaminar fracture surface were examined through an ooptical travelling scope and a scanning electron microscope. We found that abruptly unstable crack propagation called as stick-slip phenomena was observed. In addition, interlaminar fracture behaviors were affected on the location and the morphology of a crack tip as well as an interface region.

A Study on Fracture Characteristics in Opening Mode of a DCB Specimen Using a Lightweight Material (경량 재료를 이용한 DCB 시험편의 열림 모드에서의 파손 특성에 관한 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2021
  • Recently, many structures using lightweight materials have been developed. This study was conducted by using Al6061-T6 and carbon fiber reinforced plastic (CFRP), two common lightweight materials. In addition, the failure characteristics of an interface bonded between a single material and a heterogeneous bonding material were analyzed. The specimens bonded with CFRP and Al6061-T6 were utilized by the combination of the heterogeneous bonding material. The specimens had a double cantilevered shape and the bonding between the materials was achieved by applying a structural adhesive. The experiments were conducted in opening mode: the lower part of the samples was fixed, while their upper part was subjected to a forced displacement of 3 mm/min by using a tensile tester. Under the tested amount of strength, energy release rate, and considering the specimens' fracture characteristics in opening mode, the specimen "CFRP-Al" presented the maximum stress, followed by "Al" and "CFRP". We can hence conclude that the inhomogeneous material "CFRP-Al" is useful for the construction of lightweight structures bonded with structural adhesive.

A Study on the Effect of Molding Pressure on the Interlaminar Fracture Toughness (층간파괴인성치에 미치는 성형압력의 영향에 관한 연구)

  • 김형진;김재동;고성위
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1140-1147
    • /
    • 2001
  • This paper describes the effect of various molding pressure for Mode I. Mode II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using double cantilever beam(DCB), end notched flexure(ENF) and end loaded split(ELS) Specimen. The value of $G_{IC}$, $G_{IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa, however it shows highest value under 307kPa molding pressure, The SEM photographs show good fiber distribution and interfacial bonding of composites when the molding pressure is the 307kPa.

  • PDF

Crack Growth Behavior of Tensile Overload for Small Load Amplitude at High-Low Block Stress Ratio (고-저블럭 응력비에서 하중진폭이 작은 인장과대 하중의 균열성장 거동)

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.120-126
    • /
    • 1997
  • This paper examines the crack growth behavior of 7075-T651 aluminum alloy under high-low block loading condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investgated by compliance method. The applied initial stress ratios are R=-0.5, R=0.0 and R=0.25 Crack length($\alpha$), effective stress intensity factor range(ΔKeff), ratio of effective stress intensity factor range(U) and crack growth rate(d$\alpha$/dN) etc. are inspected fracture mechanics estimate.

  • PDF