• 제목/요약/키워드: Candidate gene analysis

검색결과 398건 처리시간 0.027초

Identification of a Bromodomain-containing Protein 2 (BRD2) Gene Polymorphic Variant and Its Effects on Pork Quality Traits in Berkshire Pigs

  • Lee, Dong Ju;Hwang, Jung Hye;Ha, Jeongim;Yu, Go Eun;Kwon, Seulgi;Park, Da Hye;Kang, Deok Gyeong;Kim, Tae Wan;Park, Hwa Chun;An, Sang Mi;Kim, Chul Wook
    • 한국축산식품학회지
    • /
    • 제38권4호
    • /
    • pp.703-710
    • /
    • 2018
  • Bromodomain-containing protein 2 (BRD2) is a nuclear serine/threonine kinase involved in transcriptional regulation. We investigated the expression and association of the BRD2 gene as a candidate gene for meat quality traits in Berkshire pigs. BRD2 mRNA was expressed at relatively high levels in muscle tissue. Statistical analysis revealed that the c.1709G>C polymorphism of the BRD2 gene was significantly associated with carcass weight, meat color ($a^*$, redness), protein content, cooking loss, water-holding capacity, carcass temperatures 4, 12 and 24 h postmortem, and the 24 h postmortem pH in 384 Berkshire pigs. Therefore, this polymorphism in the porcine BRD2 gene may be used as a candidate genetic marker to improve meat quality traits in pigs.

A synonymous mutation of uncoupling protein 2 (UCP2) gene is associated with growth performance, carcass characteristics and meat quality in rabbits

  • Liu, Wen-Chao;Lai, Song-Jia
    • Journal of Animal Science and Technology
    • /
    • 제58권1호
    • /
    • pp.3.1-3.6
    • /
    • 2016
  • Background: Uncoupling proteins 2 (UCP2) plays an important role in energy regulation, previous studies suggested that UCP2 is an excellent candidate gene for human obesity and growth-related traits in cattle and chicks. The current study was designed to detect the genetic variation of UCP2 gene, and to explore the association between polymorphism of UCP2 gene and growth, carcass and meat quality traits in rabbits. Results: A synonymous mutation in exon 1 and four variants in the first intron of the UCP2 gene were identified by using PCR-sequencing. The synonymous mutation c.72G>A was subsequently genotyped by MassArray system (Sequenom iPLEXassay) in 248 samples from three meat rabbit breeds (94 Ira rabbits, 83 Champagne rabbits, and 71 Tianfu black rabbits). Association analysis suggested that the individuals with AA and AG genotypes showed greater 70 d body weight (P < 0.05), 84 d body weight (P < 0.01), ADG from 28 to 84 days of age (P < 0.05), eviscerated weight (P < 0.01), semi-eviscerated weight (P < 0.01) and semi-eviscerated slaughter percentage (P < 0.05), respectively. Additionally, the individuals with AA and AG genotype had a lower pH value of longissimus muscle (P < 0.01) and hind leg muscle (P < 0.05) after slaughter 24 h. Conclusions: These findings indicated that UCP2 could be a candidate gene that associated with growth performance, body composition and meat quality in rabbits, and this would contribute to advancements in meat rabbit breeding practice.

시간열 마이크로어레이 데이터를 이용한 질병 관련 유의한 패스웨이 유전자 집합의 검출 (A Method of Identifying Disease-related Significant Pathways Using Time-Series Microarray Data)

  • 김재영;신미영
    • 전자공학회논문지CI
    • /
    • 제47권5호
    • /
    • pp.17-24
    • /
    • 2010
  • 최근 특정 질병의 진단이나 예후 예측을 위해 마이크로어레이 실험 데이터를 이용한 질병 관련 바이오마커 검출 연구가 활발히 진행되고 있다. 특히 정상인에 비해 질병 환자군에서 특이하게 발현되는 개별 유전자를 바이오 마커로 이용하는 기존의 방식과는 달리 동일한 생물학적 패스웨이에 관여하는 유전자 집합의 변화를 분석하여 특이하게 발현되는 패스웨이 유전자 집합을 바이오 마커로 사용하는 유전자 집합 분석(Gene-set analysis) 연구가 주목받고 있다. 본 논문에서는 다양한 실험 조건 요인을 가지는 시간열 마이크로어레이 실험 데이터를 이용한 유의한 패스웨이 유전자 집합을 검출하는 방법에 대해 제안한다. 시간열 마이크로어레이 데이터을 이용하여 유전자 집합 분석을 수행하기 위해서는 시간에 따른 유전자 발현값의 변화에 따라 개별 유전자의 유의성을 나타내는 스코어를 maSigPro (microarray Significant Profiles)를 이용하여 계산한 후, 이를 기반으로 전체 유전자의 순위를 결정하여 후보 유전자 집합에 대한 유의성 검증을 윌콕슨 순위합 검증을 통해 수행한다. 후보 유전자 집합의 생성을 위해서는 MSigDB (Molecular Signatures Database)의 패스웨이 정보를 이용하였으며, 본 논문에서 제안한 방법의 검증을 위해 공개된 전립선 암 관련 시간열 마이크로어레이 실험 데이터에 적용한 결과 실제로 전립선암과 관련된 것으로 밝혀진 7개의 패스웨이 중 6개의 패스웨이를 정확하게 검출할 수 있었다.

Analysis of the relationship between the end weight trait and the gene ADGRL2 in purebred landrace pigs using a Genome-wide association study

  • Kang, Ho-Chan;Kim, Hee-Sung;Lee, Jae-Bong;Yoo, Chae-Kung;Choi, Tae-Jeong;Lim, Hyun-Tae
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.238-247
    • /
    • 2018
  • The overall consumption of meat is increasing as the level of national income increases. The end weight is a trait closely associated with dressed meat. Genome-wide association study (GWAS) is an effective method of analyzing genetic variation and gene identification associated with a number of natural alternative traits because it can detect variations. So this paper did a GWAS analysis to identity the location on the genome related to the end weight in purebred landrace pigs and to explore the relevant candidate gene. This study identified a significant single nucleotide poly morphism (SNP) marker in chromosome 6 (ASGA0029422, $p=1.22{\times}10^{-6}$). Adhesion G protein-coupled receptor L2 (ADGRL2) was found to be the candidate gene at the identified SNP marker location. ADGRL2 genes have been found to be associated with cell development in relation to the external and internal environment of a cell. In addition, genotype and statistical analyses were done on nine variations on the exon of ADGRL2. The results show that the SNP marker (ASGA0029422, $p=1.32{\times}10^{-6}$) was significant, but the significance of the nine variations on the ADGRL2 exon was not verified. However, by performing further experiments and functional studies on other SNPs showing possible genetic ADGRL-Exon mutations, objects with high associations of high-end weights can be selected.

Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease

  • Ham, Seokjin;Oh, Yeon-Mok;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.2.1-2.12
    • /
    • 2019
  • Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.

Understanding the genetics of systemic lupus erythematosus using Bayesian statistics and gene network analysis

  • Nam, Seoung Wan;Lee, Kwang Seob;Yang, Jae Won;Ko, Younhee;Eisenhut, Michael;Lee, Keum Hwa;Shin, Jae Il;Kronbichler, Andreas
    • Clinical and Experimental Pediatrics
    • /
    • 제64권5호
    • /
    • pp.208-222
    • /
    • 2021
  • The publication of genetic epidemiology meta-analyses has increased rapidly, but it has been suggested that many of the statistically significant results are false positive. In addition, most such meta-analyses have been redundant, duplicate, and erroneous, leading to research waste. In addition, since most claimed candidate gene associations were false-positives, correctly interpreting the published results is important. In this review, we emphasize the importance of interpreting the results of genetic epidemiology meta-analyses using Bayesian statistics and gene network analysis, which could be applied in other diseases.

Analysis of gene expression during odontogenic differentiation of cultured human dental pulp cells

  • Seo, Min-Seock;Hwang, Kyung-Gyun;Kim, Hyong-Bum;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • 제37권3호
    • /
    • pp.142-148
    • /
    • 2012
  • Objectives: We analyzed gene-expression profiles after 14 day odontogenic induction of human dental pulp cells (DPCs) using a DNA microarray and sought candidate genes possibly associated with mineralization. Materials and Methods: Induced human dental pulp cells were obtained by culturing DPCs in odontogenic induction medium (OM) for 14 day. Cells exposed to normal culture medium were used as controls. Total RNA was extracted from cells and analyzed by microarray analysis and the key results were confirmed selectively by reverse-transcriptase polymerase chain reaction (RT-PCR). We also performed a gene set enrichment analysis (GSEA) of the microarray data. Results: Six hundred and five genes among the 47,320 probes on the BeadChip differed by a factor of more than two-fold in the induced cells. Of these, 217 genes were upregulated, and 388 were down-regulated. GSEA revealed that in the induced cells, genes implicated in Apoptosis and Signaling by wingless MMTV integration (Wnt) were significantly upregulated. Conclusions: Genes implicated in Apoptosis and Signaling by Wnt are highly connected to the differentiation of dental pulp cells into odontoblast.

Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip

  • Xia, Yanling;Qu, Haomiao;Lu, Binshan;Zhang, Qiang;Li, Heping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.467-472
    • /
    • 2018
  • Objective: Molecular cloning and bioinformatics analysis of annexin A2 (ANXA2) gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. Methods: The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer (Cervus Nippon hortulorum) and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR). Results: The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus. Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period). Conclusion: ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

Detection of 881A→881G Mutation in Tyrosinase Gene and Associations with the Black Ear Coat Color in Rabbits

  • Jiang, Y.L.;Fan, X.Z.;Lu, Z.X.;Tang, H.;Xu, J.-Q.;Du, L.-X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권10호
    • /
    • pp.1395-1397
    • /
    • 2002
  • The tyrosinase gene was selected as a candidate for uncovering genetic mechanism causing 'black ear' coat color in rabbits. A PCR-SSCP detection method was established for the $881^A{\rightarrow}881^G$ mutation located in the central region of the tyrosinase gene between the CuA and CuB binding region signatures, and this was confirmed by sequencing and alignment. Fully consistent associations between the SNP and 'black ear' coat color were observed by analysis in a "black ear" pedigree and on 61 unrelated individuals. This SNP can serve as a molecular marker for use in "back ear" wool rabbit breeding.

A Candidate Single Nucleotide Polymorphism in the 3' Untranslated Region of Stearoyl-CoA Desaturase Gene for Fatness Quality and the Gene Expression in Berkshire Pigs

  • Lim, Kyu-Sang;Kim, Jun-Mo;Lee, Eun-A;Choe, Jee-Hwan;Hong, Ki-Chang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.151-157
    • /
    • 2015
  • Fatness qualities in pigs measured by the amount of fat deposition and composition of fatty acids (FAs) in pork have considerable effect on current breeding goals. The stearoyl-CoA desaturase (SCD) gene plays a crucial role in the conversion of saturated FAs into monounsaturated FAs (MUFAs), and hence, is among the candidate genes responsible for pig fatness traits. Here, we identified a single nucleotide polymorphism (SNP, $c.^*2041T$ >C) in the 3' untranslated region by direct sequencing focused on coding and regulatory regions of porcine SCD. According to the association analysis using a hundred of Berkshire pigs, the SNP was significantly associated with FA composition (MUFAs and polyunsaturated FAs [PUFAs]), polyunsaturated to saturated (P:S) FA ratio, n-6:n-3 FA ratio, and extent of fat deposition such as intramuscular fat and marbling (p<0.05). In addition, the SNP showed a significant effect on the SCD mRNA expression levels (p = 0.041). Based on our results, we suggest that the SCD $c.^*2041T$ >C SNP plays a role in the gene regulation and affects the fatness qualities in Berkshire pigs.