• Title/Summary/Keyword: Candidate Clustering

Search Result 83, Processing Time 0.025 seconds

Ab initio calculation of half-metallic ferrocene-based nanowire

  • Kim, Seongmin;Park, Changhwi
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.425-429
    • /
    • 2014
  • Half-metallic nanostructure is highly applicable in the field of Spintronics and electronic device technology. We examine the electronic properties of a ferrocene-based nanowire as a possible candidate for a half-metallic nanostructure using VASP and SIESTA. Ferrocene-based nanowire shows high stability in both binding energy simulation and molecular dynamics (MD) simulation. The density of states (DOS) and the projected DOS of the ferrocene-based nanowire indicate that one-dimensional clustering of ferrocene molecules can be explained because of p-d orbital hybridization between iron and carbon. Half-metallic property and energy dispersion at the Fermi level due to one-dimensional structure is also observed from the DOS results.

  • PDF

An Efficient Learning Method for Large Bayesian Networks using Clustering (클러스터링을 이용한 효율적인 대규모 베이지안 망 학습 방법)

  • Jung Sungwon;Lee Kwang H.;Lee Doheon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.700-702
    • /
    • 2005
  • 본 논문에서는 대규모 베이지안 망을 빠른 시간 안에 학습하기 위한 방법으로, 클러스터링을 이용한 방법을 제안한다. 제안하는 방법은 베이지안 구조 학습에 있어서 DAG(Directed Acyclic Graph)를 탐색하는 영역을 제한하기 위해 클러스터링을 사용한다. 기존의 베이지안 구조 학습 방법들이 고려하는 후보 DAG의 수가 전체 노드 수에 의해 제한되는 데 반해, 제안되는 방법에서는 미리 정해진 클러스터의 최대 크기에 의해 제한된다. 실험 결과를 통해, 제안하는 방법이 기존의 대규모 베이지안 망 학습에 활용되었던 SC(Sparse Candidate) 방법 보다 훨씬 적은 수의 후보 DAG만을 고려하였음에도 불구하고, 비슷한 정도의 정확도를 나타냄을 보인다.

  • PDF

Candidate First Moves for Solving Life-and-Death Problems in the Game of Go, using Kohonen Neural Network (코호넨 신경망을 이용 바둑 사활문제를 풀기 위한 후보 첫 수들)

  • Lee, Byung-Doo;Keum, Young-Wook
    • Journal of Korea Game Society
    • /
    • v.9 no.1
    • /
    • pp.105-114
    • /
    • 2009
  • In the game of Go, the life-and-death problem is a fundamental problem to be definitely overcome when implementing a computer Go program. To solve local Go problems such as life-and-death problems, an important consideration is how to tackle the game tree's huge branching factor and its depth. The basic idea of the experiment conducted in this article is that we modelled the human behavior to get the recognized first moves to kill the surrounded group. In the game of Go, similar life-and-death problems(patterns) often have similar solutions. To categorize similar patterns, we implemented Kohonen Neural Network(KNN) based clustering and found that the experimental result is promising and thus can compete with a pattern matching method, that uses supervised learning with a neural network, for solving life-and-death problems.

  • PDF

A Fast Way for Alignment Marker Detection and Position Calibration (Alignment Marker 고속 인식 및 위치 보정 방법)

  • Moon, Chang Bae;Kim, HyunSoo;Kim, HyunYong;Lee, Dongwon;Kim, Tae-Hoon;Chung, Hae;Kim, Byeong Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • The core of the machine vision that is frequently used at the pre/post-production stages is a marker alignment technology. In this paper, a method to detect the angle and position of a product at high speed by use of a unique pattern present in the marker stamped on the product, and calibrate them is proposed. In the proposed method, to determine the angle and position of a marker, the candidates of the marker are extracted by using a variation of the integral histogram, and then clustering is applied to reduce the candidates. The experimental results revealed about 5s 719ms improvement in processing time and better precision in detecting the rotation angle of a product.

Application of Bioinformatics for the Functional Genomics Analysis of Prostate Cancer Therapy

  • Mousses, Spyro
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.74-82
    • /
    • 2000
  • Prostate cancer initially responds and regresses in response to androgen depletion therapy, but most human prostate cancers will eventually recur, and re-grow as an androgen independent tumor. Once these tumors become hormone refractory, they usually are incurable leading to death for the patient. Little is known about the molecular details of how prostate cancer cells regress following androgen ablation and which genes are involved in the androgen independent growth following the development of resistance to therapy. Such knowledge would reveal putative drug targets useful in the rational therapeutic design to prevent therapy resistance and control androgen independent growth. The application of genome scale technologies have permitted new insights into the molecular mechanisms associated with these processes. Specifically, we have applied functional genomics using high density cDNA microarray analysis for parallel gene expression analysis of prostate cancer in an experimental xenograft system during androgen withdrawal therapy, and following therapy resistance, The large amount of expression data generated posed a formidable bioinformatics challenge. A novel template based gene clustering algorithm was developed and applied to the data to discover the genes that respond to androgen ablation. The data show restoration of expression of androgen dependent genes in the recurrent tumors and other signaling genes. Together, the discovered genes appear to be involved in prostate cancer cell growth and therapy resistance in this system. We have also developed and applied tissue microarray (TMA) technology for high throughput molecular analysis of hundreds to thousands of clinical specimens simultaneously. TMA analysis was used for rapid clinical translation of candidate genes discovered by cDNA microarray analysis to determine their clinical utility as diagnostic, prognostic, and therapeutic targets. Finally, we have developed a bioinformatic approach to combine pharmacogenomic data on the efficacy and specificity of various drugs to target the discovered prostate cancer growth associated candidate genes in an attempt to improve current therapeutics.

  • PDF

Genetic diversity of Indonesian cattle breeds based on microsatellite markers

  • Agung, Paskah Partogi;Saputra, Ferdy;Zein, Moch Syamsul Arifin;Wulandari, Ari Sulistyo;Putra, Widya Pintaka Bayu;Said, Syahruddin;Jakaria, Jakaria
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.467-476
    • /
    • 2019
  • Objective: This research was conducted to study the genetic diversity in several Indonesian cattle breeds using microsatellite markers to classify the Indonesian cattle breeds. Methods: A total of 229 DNA samples from of 10 cattle breeds were used in this study. The polymerase chain reaction process was conducted using 12 labeled primers. The size of allele was generated using the multiplex DNA fragment analysis. The POPGEN and CERVUS programs were used to obtain the observed number of alleles, effective number of alleles, observed heterozygosity value, expected heterozygosity value, allele frequency, genetic differentiation, the global heterozygote deficit among breeds, and the heterozygote deficit within the breed, gene flow, Hardy-Weinberg equilibrium, and polymorphism information content values. The MEGA program was used to generate a dendrogram that illustrates the relationship among cattle population. Bayesian clustering assignments were analyzed using STRUCTURE program. The GENETIX program was used to perform the correspondence factorial analysis (CFA). The GENALEX program was used to perform the principal coordinates analysis (PCoA) and analysis of molecular variance. The principal component analysis (PCA) was performed using adegenet package of R program. Results: A total of 862 alleles were detected in this study. The INRA23 allele 205 is a specific allele candidate for the Sumba Ongole cattle, while the allele 219 is a specific allele candidate for Ongole Grade. This study revealed a very close genetic relationship between the Ongole Grade and Sumba Ongole cattle and between the Madura and Pasundan cattle. The results from the CFA, PCoA, and PCA analysis in this study provide scientific evidence regarding the genetic relationship between Banteng and Bali cattle. According to the genetic relationship, the Pesisir cattle were classified as Bos indicus cattle. Conclusion: All identified alleles in this study were able to classify the cattle population into three clusters i.e. Bos taurus cluster (Simmental Purebred, Simmental Crossbred, and Holstein Friesian cattle); Bos indicus cluster (Sumba Ongole, Ongole Grade, Madura, Pasundan, and Pesisir cattle); and Bos javanicus cluster (Banteng and Bali cattle).

A Study of Optimal path Availability Clustering algorithm in Ad Hoc network (에드 혹 네트워크에서 최적 경로의 유효성 있는 클러스터링 알고리즘에 관한 연구)

  • Oh, Young-Jun;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.278-280
    • /
    • 2012
  • We are propose the position of the node context-awareness information and the validity of the head node in the path according to the clustering how to elect one of the energy efficiency ECOPS (Energy Conserving Optimal path Schedule) algorithm. Existing LEACH algorithm to elect the head node when the node's energy probability distribution function based on the management of the head node is optional cycle. However, in this case, the distance of the relay node status information including context-awareness parameters does not reflect. These factors are not suitable for the relay node or nodes are included in the probability distribution, if the head node selects occurs. In particular, to solve the problems from the LEACH-based hierarchical clustering algorithms, this study defines location with the status context information and the residual energy factor in choosing topology of the structure adjacent nodes. ECOPS algorithm that contextual information is contributed for head node selection in topology protocols. The proposed ECOPS algorithm has the head node replacement situations from the candidate head node in the optimal path and efficient energy conservation that is the path of the member nodes. The new head node election show as the entire node lifetime and network management technique improving the network lifetime and efficient management the simulation results.

  • PDF

A Study of Optimal path Availability Clustering algorithm in Ad Hoc network (에드 혹 네트워크에서 최적 경로의 유효성 있는 클러스터링 알고리즘에 관한 연구)

  • Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.225-232
    • /
    • 2013
  • In this paper, we introduce a method that can be used to select the position of head node for context-awareness information. The validity of the head node optimal location is saving the energy in the path according to the clustering. It is important how to elect one of the relay node for energy efficiency routing. Existing LEACH algorithm to elect the head node when the node's energy probability distribution function based on the management of the head node is optional cycle. However, in this case, the distance of the relay node status information including context-awareness parameters does not reflect. These factors are not suitable for the relay node or nodes are included in the probability distribution during the head node selects occurs. In particular, to solve the problems from the LEACH-based hierarchical clustering algorithms, this study defines location with the status context information and the residual energy factor in choosing topology of the structure adjacent nodes. The proposed ECOPS (Energy Conserving Optimal path Schedule) algorithm that contextual information is contributed for head node selection in topology protocols. This proposed algorithm has the head node replacement situations from the candidate head node in the optimal path and efficient energy conservation that is the path of the member nodes. The new head node election technique show improving the entire node lifetime and network in management the network from simulation results.

A DB Pruning Method in a Large Corpus-Based TTS with Multiple Candidate Speech Segments (대용량 복수후보 TTS 방식에서 합성용 DB의 감량 방법)

  • Lee, Jung-Chul;Kang, Tae-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.572-577
    • /
    • 2009
  • Large corpus-based concatenating Text-to-Speech (TTS) systems can generate natural synthetic speech without additional signal processing. To prune the redundant speech segments in a large speech segment DB, we can utilize a decision-tree based triphone clustering algorithm widely used in speech recognition area. But, the conventional methods have problems in representing the acoustic transitional characteristics of the phones and in applying context questions with hierarchic priority. In this paper, we propose a new clustering algorithm to downsize the speech DB. Firstly, three 13th order MFCC vectors from first, medial, and final frame of a phone are combined into a 39 dimensional vector to represent the transitional characteristics of a phone. And then the hierarchically grouped three question sets are used to construct the triphone trees. For the performance test, we used DTW algorithm to calculate the acoustic similarity between the target triphone and the triphone from the tree search result. Experimental results show that the proposed method can reduce the size of speech DB by 23% and select better phones with higher acoustic similarity. Therefore the proposed method can be applied to make a small sized TTS.

Stereo Vision-based Visual Odometry Using Robust Visual Feature in Dynamic Environment (동적 환경에서 강인한 영상특징을 이용한 스테레오 비전 기반의 비주얼 오도메트리)

  • Jung, Sang-Jun;Song, Jae-Bok;Kang, Sin-Cheon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.263-269
    • /
    • 2008
  • Visual odometry is a popular approach to estimating robot motion using a monocular or stereo camera. This paper proposes a novel visual odometry scheme using a stereo camera for robust estimation of a 6 DOF motion in the dynamic environment. The false results of feature matching and the uncertainty of depth information provided by the camera can generate the outliers which deteriorate the estimation. The outliers are removed by analyzing the magnitude histogram of the motion vector of the corresponding features and the RANSAC algorithm. The features extracted from a dynamic object such as a human also makes the motion estimation inaccurate. To eliminate the effect of a dynamic object, several candidates of dynamic objects are generated by clustering the 3D position of features and each candidate is checked based on the standard deviation of features on whether it is a real dynamic object or not. The accuracy and practicality of the proposed scheme are verified by several experiments and comparisons with both IMU and wheel-based odometry. It is shown that the proposed scheme works well when wheel slip occurs or dynamic objects exist.

  • PDF