• Title/Summary/Keyword: Cancer vaccines

Search Result 127, Processing Time 0.025 seconds

Current Approaches in Development of Immunotherapeutic Vaccines for Breast Cancer

  • Allahverdiyev, Adil;Tari, Gamze;Bagirova, Melahat;Abamor, Emrah Sefik
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.343-353
    • /
    • 2018
  • Cancer is the leading cause of death worldwide. In developed as well as developing countries, breast cancer is the most common cancer found among women. Currently, treatment of breast cancer consists mainly of surgery, chemotherapy, hormone therapy, and radiotherapy. In recent years, because of increased understanding of the therapeutic potential of immunotherapy in cancer prevention, cancer vaccines have gained importance. Here, we review various immunotherapeutic breast cancer vaccines including peptide-based vaccines, whole tumor cell vaccines, gene-based vaccines, and dendritic cell vaccines. We also discuss novel nanotechnology-based approaches to improving breast cancer vaccine efficiency.

Continuous DC-CIK Infusions Restore CD8+ Cellular Immunity, Physical Activity and Improve Clinical Efficacy in Advanced Cancer Patients Unresponsive to Conventional Treatments

  • Zhao, Yan-Jie;Jiang, Ni;Song, Qing-Kun;Wu, Jiang-Ping;Song, Yu-Guang;Zhang, Hong-Mei;Chen, Feng;Zhou, Lei;Wang, Xiao-Li;Zhou, Xin-Na;Yang, Hua-Bing;Ren, Jun;Lyerly, Herbert Kim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2419-2423
    • /
    • 2015
  • Background: There are few choices for treatment of advanced cancer patients who do not respond to or tolerate conventional anti-cancer treatments. Therefore this study aimed to deploy the benefits and clinical efficacy of continuous dendritic cell-cytokine induced killer cell infusions in such patients. Materials and Methods: A total of 381 infusions (from 67 advanced cases recruited) were included in this study. All patients underwent peripheral blood mononuclear cell apheresis for the following cellular therapy and dendritic cells-cytokine induced killer cells were expanded in vitro. Peripheral blood T lymphocyte subsets were quantified through flow cytometry to address the cellular immunity status. Clinical efficacy and physical activities were evaluated by RECIST criteria and Eastern Cooperative Oncology Group scores respectively. Logistic regression model was used to estimate the association between cellular infusions and clinical benefits. Results: An average of $5.7{\pm}2.94{\times}10^9$ induced cells were infused each time and patients were exposed to 6 infusions. Cellular immunity was improved in that cytotoxic $CD8^+CD28^+$ T lymphocytes were increased by 74% and suppressive $CD8^+CD28^-$ T lymphocytes were elevated by 16% (p<0.05). Continuous infusion of dendritic cells-cytokine induced killer cells was associated with improvement of both patient status and cellular immunity. A median of six infusions were capable of reducing risk of progression by 70% (95%CI 0.10-0.91). Every elevation of one ECOG score corresponded to a 3.90-fold higher progression risk (p<0.05) and 1% increase of $CD8^+CD28^-$ T cell proportion reflecting a 5% higher risk of progression (p<0.05). Conclusions: In advanced cancer patients, continuous dendritic cell-cytokine induced killer cell infusions are capable of recovering cellular immunity, improving patient status and quality of life in those who are unresponsive to conventional cancer treatment.

Cancer Vaccines (암백신)

  • Son, Eun-Wha;In, Sang-Whan;Pyo, Suhk-Neung
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.55-67
    • /
    • 2005
  • Cancer vaccine is an active immunotherapy to stimulate the immune system to mount a response against the tumor specific antigen. Working as a stimulant to the body's own immune system, cancer vaccines help the body recognize and destroy targeted cancers and may help to shrink advanced tumors. Research is currently underway to develop therapeutic cancer vaccines. It is also possible to develop prophylactic vaccines in the future. The whole cell approach to eradicate cancer has used whole cancer cells to make vaccine. In an early stage of this approach, whole cell lysate or a mixture of immunoadjuvant and inactivated cancer cells has been used. Improved vaccines are being developed that utilize cytokines or costimulatory molecules to mount an attack against cancer cells. In case of melanoma, these vaccines are expected to have a therapeutic effect of vaccine. Furthermore, it is attempting to treat stomach cancer, colorectal cancer, pancreatic cancer, and prostate cancer. Other vaccines are being developing that are peptide vaccine, recombinant vaccine and dendritic cell vaccine. Out of them, reintroduction of antigen-specific dendritic cells into patient and DNA vaccine are mostly being conducted. Currently, research and development efforts are underway to develop therapeutic cancer vaccine such as DNA vaccine for the treatment of multiple forms of cancers.

Production of Recombinant Anti-Cancer Vaccines in Plants

  • Lee, Jeong Hwan;Ko, Kisung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.345-353
    • /
    • 2017
  • Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.

Cancer Immunotherapy: Cancer Vaccines

  • Lee, Na Kyung;Kim, Hong Sung
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.161-165
    • /
    • 2017
  • It has well reported that host immune system is closely related to cancer growth and eradication. Among cancer immunotherapy, cancer vaccine is focused on this review. Cancer vaccine is using host immune system against various tumor antigens to treat cancer. We discuss the classification and characteristics of the preventive vaccine, therapeutic vaccine and combination cancer immunotherapy.

Current development of therapeutic vaccines for the treatment of chronic infectious diseases

  • Pil-Gu Park;Munazza Fatima;Timothy An;Ye-Eun Moon;Seungkyun Woo;Hyewon Youn;Kee-Jong Hong
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2024
  • Chronic infectious diseases refer to diseases that require a long period of time from onset to cure or death, the use of therapeutic vaccines has recently emerged to eradicate diseases. Currently, clinical research is underway to develop therapeutic vaccines for chronic infectious diseases based on various vaccine formulations, and the recent success of the messenger RNA vaccine platform and efforts to apply it to therapeutic vaccines are having a positive impact on conquering chronic infectious diseases. However, since research on the development of therapeutic vaccines is still relatively lacking compared to prophylactic vaccines, there is a need to focus more on the development of therapeutic vaccines to overcome threats to human health caused by chronic infectious diseases. In order to accelerate the development of therapeutic vaccines for chronic infectious diseases in the future, it is necessary to establish a clear concept of therapeutic vaccines suitable for the characteristics of each chronic infectious disease, as well as standardize vaccine effectiveness evaluation methods, secure standards/reference materials, and simplify the vaccine approval procedure.

Analysis of physical and biological delivery systems for DNA cancer vaccines and their translation to clinical development

  • Christopher Oelkrug
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.73-82
    • /
    • 2024
  • DNA cancer vaccines as an approach in tumor immunotherapy are still being investigated in preclinical and clinical settings. Nevertheless, only a small number of clinical studies have been published so far and are still active. The investigated vaccines show a relatively stable expression in in-vitro transfected cells and may be favorable for developing an immunologic memory in patients. Therefore, DNA vaccines could be suitable as a prophylactic or therapeutic approach against cancer. Due to the low efficiency of these vaccines, the administration technique plays an important role in the vaccine design and its efficacy. These DNA cancer vaccine delivery systems include physical, biological, and non-biological techniques. Although the pre-clinical studies show promising results in the application of the different delivery systems, further studies in clinical trials have not yet been successfully proven.

DNA Vaccines against Infectious Diseases and Cancer

  • Han, Duk-Jae;Weiner, David B.;Sin, Jeong-Im
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • Progress in the development of DNA vaccines and their delivery strategies has been made since their initial concept as a next generation vaccine. Since DNA vaccine includes non-infectious DNA parts of pathogens, it can't cause disease yet it closely mimic the natural process of infection and immune responses. Despite their early promising results of controlling infectious diseases and cancer in small animal models, DNA vaccines failed to display a level of immunogenicity required for combating these diseases in humans, possibly due to their lower protein expression levels. However, increasing evidence has shown that DNA vaccines are clinically well-tolerated and safe. Furthermore, one notable advantage of DNA vaccines includes convenient utilities of plasmid DNAs coding for antigens. For instance, any emerging pathogens could be prevented easily and timely by allowing the simple exchange of antigen-encoding genes. In this review, newly developed DNA vaccine strategies, including electroporation, which has emerged as a potent method for DNA delivery, targeting infectious diseases and cancer will be discussed with a focus on any on-going DNA vaccine trials or progress made pre-clinically and in clinics.

Development and Clinical Evaluation of Dendritic Cell Vaccines for HPV Related Cervical Cancer - a Feasibility Study

  • Ramanathan, Priya;Ganeshrajah, Selvaluxmy;Raghanvan, Rajalekshmi Kamalalayam;Singh, Shirley Sundar;Thangarajan, Rajkumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5909-5916
    • /
    • 2014
  • Human papillomavirus infection (HPV) and HPV related immune perturbation play important roles in the development of cervical cancer. Since mature dendritic cells (DCs) are potent antigen-presenting cells (APC), they could be primed by HPV antigens against cervical cancers. In this study we were able to generate, maintain and characterize, both phenotypically and functionally, patient specific dendritic cells in vitro. A randomized Phase I trial with three arms - saline control (arm I), unprimed mature DC (arm II) and autologous tumor lysate primed mature DC (arm III) and fourteen patients was conducted. According to WHO criteria, grade 0 or grade one toxicity was observed in three patients. One patient who received tumor lysate primed dendritic cells and later cis-platin chemotherapy showed a complete clinical response of her large metastatic disease and remained disease free for more than 72 months. Our findings indicate that DC vaccines hold promise as adjuvant sfor cervical cancer treatment and further studies to improve their efficacy need to be conducted.

COVID-19 Vaccination in Patients with Gastrointestinal Cancer Receiving Chemotherapy (항암치료를 받는 소화기 암환자에서 코로나바이러스 감염증-19 백신접종)

  • Jonghyun Lee;Dong Uk Kim
    • Journal of Digestive Cancer Research
    • /
    • v.10 no.2
    • /
    • pp.107-111
    • /
    • 2022
  • In 2019, coronavirus disease (COVID-19), which originated in Wuhan, has spread worldwide. In most people, COVID-19 symptoms are not severe. However, the mortality rate and severity were high in risk groups such as in older people and patients with underlying diseases. As patients with cancer are one of the risk groups, the vaccination for COVID-19 is emphasized in these patients. However, COVID-19 vaccines are not tested enough in special groups such as in patients with cancer because these vaccines are developed at an unprecedented speed. This causes confusion about whether patients undergoing chemotherapy should be vaccinated or not. In this study, international guidelines and studies were reviewed. Most of the studies recommended vaccination. No evidences of any negative effects for the efficacy or safety were recorded in patients undergoing cytotoxic, targeted, and immune agents. However, in critical conditions such as cytopenia, vaccination must be decided according to the patient's condition. COVID-19 vaccines were also recommended for patients on surgery or radiation therapy. If possible, vaccine is given before surgery to avoid confusion between surgical complications and side effects of the vaccine. The radiation recall phenomenon after vaccination has been reported in some cases of radiation therapy. Clinicians should consider these situations before vaccinating each patient. We hope that clearer guidelines will be established by accumulating verified data.