DOI QR코드

DOI QR Code

Current development of therapeutic vaccines for the treatment of chronic infectious diseases

  • Pil-Gu Park (Department of Microbiology, Gachon University College of Medicine) ;
  • Munazza Fatima (Department of Microbiology, Gachon University College of Medicine) ;
  • Timothy An (Lee Gil Ya Cancer and Diabetes Institute, Gachon University) ;
  • Ye-Eun Moon (Lee Gil Ya Cancer and Diabetes Institute, Gachon University) ;
  • Seungkyun Woo (Lee Gil Ya Cancer and Diabetes Institute, Gachon University) ;
  • Hyewon Youn (Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital) ;
  • Kee-Jong Hong (Department of Microbiology, Gachon University College of Medicine)
  • Received : 2023.12.29
  • Accepted : 2023.12.29
  • Published : 2024.01.31

Abstract

Chronic infectious diseases refer to diseases that require a long period of time from onset to cure or death, the use of therapeutic vaccines has recently emerged to eradicate diseases. Currently, clinical research is underway to develop therapeutic vaccines for chronic infectious diseases based on various vaccine formulations, and the recent success of the messenger RNA vaccine platform and efforts to apply it to therapeutic vaccines are having a positive impact on conquering chronic infectious diseases. However, since research on the development of therapeutic vaccines is still relatively lacking compared to prophylactic vaccines, there is a need to focus more on the development of therapeutic vaccines to overcome threats to human health caused by chronic infectious diseases. In order to accelerate the development of therapeutic vaccines for chronic infectious diseases in the future, it is necessary to establish a clear concept of therapeutic vaccines suitable for the characteristics of each chronic infectious disease, as well as standardize vaccine effectiveness evaluation methods, secure standards/reference materials, and simplify the vaccine approval procedure.

Keywords

Acknowledgement

This research was supported by grants (23202MFDS145 & RS-2023-00217026) from Ministry of Food and Drug Safety in 2023.

References

  1. Farmer PE. Shattuck Lecture. Chronic infectious disease and the future of health care delivery. N Engl J Med 2013;369:2424-36. https://doi.org/10.1056/NEJMsa1310472
  2. Mancuso G, Midiri A, De Gaetano S, Ponzo E, Biondo C. Tackling drug-resistant tuberculosis: new challenges from the old pathogen Mycobacterium tuberculosis. Microorganisms 2023;11:2277.
  3. Temereanca A, Ruta S. Strategies to overcome HIV drug resistance-current and future perspectives. Front Microbiol 2023;14:1133407.
  4. de la Fuente-Nunez C, Cesaro A, Hancock RE. Antibiotic failure: beyond antimicrobial resistance. Drug Resist Updat 2023;71:101012.
  5. Boukhebza H, Bellon N, Limacher JM, Inchauspe G. Therapeutic vaccination to treat chronic infectious diseases: current clinical developments using MVA-based vaccines. Hum Vaccin Immunother 2012;8:1746-57. https://doi.org/10.4161/hv.21689
  6. McCance DJ. Human papilloma viruses. Amsterdam: Elsevier; 2002.
  7. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer 2017;141:664-70. https://doi.org/10.1002/ijc.30716
  8. Kash N, Lee MA, Kollipara R, Downing C, Guidry J, Tyring SK. Safety and efficacy data on vaccines and immunization to human papillomavirus. J Clin Med 2015;4:614-33. https://doi.org/10.3390/jcm4040614
  9. Furumoto H, Irahara M. Human papilloma virus (HPV) and cervical cancer. J Med Invest 2002;49:124-33.
  10. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. IARC Monogr Eval Carcinog Risks Hum 2012;100(Pt B):1-441.
  11. Khan G, Fitzmaurice C, Naghavi M, Ahmed LA. Global and regional incidence, mortality and disability-adjusted life-years for Epstein-Barr virus-attributable malignancies, 1990-2017. BMJ Open 2020;10:e037505.
  12. Chang MS, Kim WH. Epstein-Barr virus in human malignancy: a special reference to Epstein-Barr virus associated gastric carcinoma. Cancer Res Treat 2005;37:257-67. https://doi.org/10.4143/crt.2005.37.5.257
  13. Forte E, Zhang Z, Thorp EB, Hummel M. Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response. Front Cell Infect Microbiol 2020;10:130.
  14. Ison MG. Diagnosis of gastrointestinal cytomegalovirus infections: an imperfect science. Clin Infect Dis 2013;57:1560-1. https://doi.org/10.1093/cid/cit524
  15. Nichols WG, Boeckh M. Recent advances in the therapy and prevention of CMV infections. J Clin Virol 2000;16:25-40. https://doi.org/10.1016/S1386-6532(99)00065-7
  16. Gershon AA, Breuer J, Cohen JI, et al. Varicella zoster virus infection. Nat Rev Dis Primers 2015;1:15016.
  17. Donahue JG, Choo PW, Manson JE, Platt R. The incidence of herpes zoster. Arch Intern Med 1995;155:1605-9. https://doi.org/10.1001/archinte.1995.00430150071008
  18. Ragozzino MW, Melton LJ, Kurland LT, Chu CP, Perry HO. Population-based study of herpes zoster and its sequelae. Medicine (Baltimore) 1982;61:310-6. https://doi.org/10.1097/00005792-198209000-00003
  19. Heininger U, Seward JF. Varicella. Lancet 2006;368:1365-76. https://doi.org/10.1016/S0140-6736(06)69561-5
  20. Johnson RW, Rice AS. Clinical practice: postherpetic neuralgia. N Engl J Med 2014;371:1526-33. https://doi.org/10.1056/NEJMcp1403062
  21. Levin MJ, Weinberg A. Immune responses to zoster vaccines. Hum Vaccin Immunother 2019;15:772-7. https://doi.org/10.1080/21645515.2018.1560918
  22. Looker KJ, Magaret AS, May MT, et al. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One 2015;10:e0140765.
  23. Looker KJ, Magaret AS, Turner KM, Vickerman P, Gottlieb SL, Newman LM. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One 2015;10:e114989.
  24. James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ 2020;98:315-29. https://doi.org/10.2471/BLT.19.237149
  25. Suzich JB, Cliffe AR. Strength in diversity: understanding the pathways to herpes simplex virus reactivation. Virology 2018;522:81-91. https://doi.org/10.1016/j.virol.2018.07.011
  26. Kwon SY, Lee CH. Epidemiology and prevention of hepatitis B virus infection. Korean J Hepatol 2011;17:87-95. https://doi.org/10.3350/kjhep.2011.17.2.87
  27. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet 2015;386:1546-55. https://doi.org/10.1016/S0140-6736(15)61412-X
  28. Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. J Hepatol 2016;64:S71-83. https://doi.org/10.1016/j.jhep.2016.01.026
  29. Fleites YA, Aguiar J, Cinza Z, et al. HeberNasvac, a therapeutic vaccine for chronic hepatitis B, stimulates local and systemic markers of innate immunity: potential use in SARS-CoV-2 postexposure prophylaxis. Euroasian J Hepatogastroenterol 2021;11:59-70.
  30. Carabali-Isajar ML, Rodriguez-Bejarano OH, Amado T, et al. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol 2023;39:206.
  31. Lee SH. Tuberculosis infection and latent tuberculosis. Tuberc Respir Dis (Seoul) 2016;79:201-6. https://doi.org/10.4046/trd.2016.79.4.201
  32. Bagcchi S. WHO's global tuberculosis report 2022. Lancet Microbe 2023;4:e20.
  33. Hatherill M, Cobelens F. Infant BCG vaccination is beneficial, but not sufficient. Lancet Glob Health 2022;10:e1220-1. https://doi.org/10.1016/S2214-109X(22)00325-4