• Title/Summary/Keyword: Cancer spheroid

Search Result 25, Processing Time 0.03 seconds

Comparative Evaluation of Colon Cancer Stemness and Chemoresistance in Optimally Constituted HCT-8 cell-based Spheroids (적정 구성 배양 HCT-8 기반 대장암 스페로이드의 암 줄기세포능 및 항암제 내성 평가의 비교 평가 연구)

  • Lee, Seung Joon;Kim, Hyoung-Kab;Lee, Hyang Burm;Moon, Yuseok
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1313-1319
    • /
    • 2016
  • Cancer is a complex disease heterogeneously composed of various types of cells including cancer stem-like cells responsible for relapse and chemoresistance in the tumor microenvironment. The conventional two-dimensional cell culture-based platform has critical limitations for representing the heterogeneity of cancer cells in the three-dimensional tumor niche in vivo. To overcome this insufficiency, three-dimensional cell culture methods in a scaffold-dependent or -free physical environment have been developed. In this study, we improved and simplified the HCT-8 colon cancer cell-based spheroid culture protocol and evaluated the relationship between cancer stemness and responses of chemosensitivity to 5- Fluorouracil (5-FU), a representative anticancer agent against colon cancer. Supplementation with defined growth factors in the medium and the culture dish of the regular surface with low attachment were required for the formation of constant-sized spheroids containing $CD44^+$ and $CD133^+$ colon cancer stem cells. The chemo-sensitivities of $CD44^+$ cancer stem cells in the spheroids were much lower than those of $CD44^-$ non-stem-like cancer cells, indicating that the chemoresistance to 5-FU is due to the stemness of colon cancer cells. Taken together, the inflammation and oncogenic gut environment-sensitive HCT-8 cell-based colon cancer spheroid culture and comparative evaluation using the simplified model would be an efficient and applicable way to estimate colon cancer stemness and pharmaceutical response to anticancer drugs in the realistic tumor niche.

Pharmacodynamics of CKD-602 (Belotecan) in 3D Cultures of Human Colorectal Carcinoma Cells

  • Lee Sin-Hyung;Al-Abd Ahmed M.;Park Jong-Kook;Cha Jung-Ho;Ahn Soon-Kil;Kim Joon-Kyum;Kuh Hyo-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • CKD-602 exerts its antitumor effect via inhibition of topoisomerase I in cancer cells. Multicellular spheroid (MCS) and Multicellular layers (MCLs) are known as in vitro 3-dimensional models which closely represent tumor conditions in vivo. In order to investigate the potential of CKD-602 against human colorectal tumors, we evaluated the anti-proliferative activity and penetration ability of CKD-602 in MCS and MCL cultures of DLD-l human colorectal cancer cells, respectively. The maximum effects($E_{max}$) induced by CKD-602 were significantly lower in MCS compared to monolayers (48% vs 92%). With prolonged drug exposure, the $IC_{50's}$ of CKD-602 decreased to $23.5{\pm}1.0nM$ in monolayers after 24 h exposure and $42.3{\pm}1.7nM$ in MCS after 6 days, respectively. However, no further increase in effect was observed for exposure time longer than growth doubling time (Td) in both cultures. Activity of CKD-602 was significantly reduced after penetration through MCL and also with cell-free insert membrane. In conclusion, CKD-602 showed significantly decreased anti-proliferative activity in 3D cultures (MCS) of human colorectal cancer cells. Tumor penetration of CKD-602 could not be determined due to loss of activity after penetration through cell free insert membrane, which warrants further evaluation using a modified model.

Implication of High Mobility Group Box 1 (HMGB1) in Multicellular Tumor Spheroid (MTS) Culture-induced Epithelial-mesenchymal Transition (Multicellular tumor spheroid (MTS) 배양에 의한 EMT에서 HMGB1의 역할)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.

Induction of Cell Death by Bifidobacterium infantis DS1685 in Colorectal and Breast Cancers via SMAD4/TGF-Beta Activation

  • In Hwan Tae;Jinkwon Lee;Yunsang Kang;Jeong Min Lee;Kunhyang Park;Haneol Yang;Hee-Won Kim;Jeong Heon Ko;Doo-Sang Park;Dae-Soo Kim;Mi-Young Son;Hyun-Soo Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1698-1704
    • /
    • 2024
  • Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.

TRRAP stimulates the tumorigenic potential of ovarian cancer stem cells

  • Kang, Kyung Taek;Kwon, Yang Woo;Kim, Dae Kyoung;Lee, Su In;Kim, Ki-Hyung;Suh, Dong-Soo;Kim, Jae Ho
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.514-519
    • /
    • 2018
  • Ovarian cancer is the most fatal gynecological malignancy in women and identification of new therapeutic targets is essential for the continued development of therapy for ovarian cancer. TRRAP (transformation/transcription domain-associated protein) is an adaptor protein and a component of histone acetyltransferase complex. The present study was undertaken to investigate the roles played by TRRAP in the proliferation and tumorigenicity of ovarian cancer stem cells. TRRAP expression was found to be up-regulated in the sphere cultures of A2780 ovarian cancer cells. Knockdown of TRRAP significantly decreased cell proliferation and the number of A2780 spheroids. In addition, TRRAP knockdown induced cell cycle arrest and increased apoptotic percentages of A2780 sphere cells. Notably, the mRNA levels of stemness-associated markers, that is, OCT4, SOX2, and NANOG, were suppressed in TRRAP-silenced A2780 sphere cells. In addition, TRRAP overexpression increased the mRNA level of NANOG and the transcriptional activity of NANOG promoter in these cells. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model. Taken together, the findings of the present study suggest that TRRAP plays an important role in the regulation of the proliferation and stemness of ovarian cancer stem cells.

Synergistic anticancer activity of resveratrol in combination with docetaxel in prostate carcinoma cells

  • Lee, Sang-Han;Lee, Yoon-Jin
    • Nutrition Research and Practice
    • /
    • v.15 no.1
    • /
    • pp.12-25
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The study was conducted to investigate the efficacy of the combination treatment of phytochemical resveratrol and the anticancer drug docetaxel (DTX) on prostate carcinoma LNCaP cells, including factors related to detailed cell death mechanisms. MATERIALS/METHODS: Using 2-dimensional monolayer and 3-dimensional spheroid culture systems, we examined the effects of resveratrol and DTX on cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential, apoptosis, and necroptosis by MTT, flow cytometry, and Western blotting. RESULTS: At concentrations not toxic to normal human prostate epithelial cells, resveratrol effectively decreased the viability of LNCaP cells depending on concentration and time. The combination treatment of resveratrol and DTX exhibited synergistic inhibitory effects on cell growth, demonstrated by an increase in the sub-G0/G1 peak, Annexin V-phycoerythrin positive cell fraction, ROS, mitochondrial dysfunction, and DNA damage response as well as concurrent activation of apoptosis and necroptosis. Apoptosis and necroptosis were rescued by pretreatment with ROS scavenger N-acetylcysteine. CONCLUSIONS: We report resveratrol as an adjuvant drug candidate for improving the outcome of treatment in DTX therapy. Although the underlying mechanisms of necroptosis should be investigated comprehensively, targeting apoptosis and necroptosis simultaneously in the treatment of cancer can be a useful strategy for the development of promising drug candidates.

Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy

  • Yun-Jeong Jeong;Mi-Hee Yu;Yuna Cho;Min-Young Jo;Kwon-Ho Song;Yung Hyun Choi;Taeg Kyu Kwon;Jong-Young Kwak;Young-Chae Chang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells

  • Lee, Yoon-Jin;Park, Kwan-Sik;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.493-502
    • /
    • 2020
  • Apigenin, a naturally occurring flavonoid, is known to exhibit significant anticancer activity. This study was designed to determine the effects of apigenin on two malignant mesothelioma cell lines, MSTO-211H and H2452, and to explore the underlying mechanism(s). Apigenin significantly inhibited cell viability with a concomitant increase in intracellular reactive oxygen species (ROS) and caused the loss of mitochondrial membrane potential (ΔΨm), and ATP depletion, resulting in apoptosis and necroptosis in monolayer cell culture. Apigenin upregulated DNA damage response proteins, including the DNA double strand break marker phospho (p)-histone H2A.X. and caused a transition delay at the G2/M phase of cell cycle. Western blot analysis showed that apigenin treatment upregulated protein levels of cleaved caspase-3, cleaved PARP, p-MLKL, and p-RIP3 along with an increased Bax/Bcl-2 ratio. ATP supplementation restored cell viability and levels of DNA damage-, apoptosisand necroptosis-related proteins that apigenin caused. In addition, N-acetylcysteine reduced ROS production and improved ΔΨm loss and cell death that were caused by apigenin. In a 3D spheroid culture model, ROS-dependent necroptosis was found to be a mechanism involved in the anti-cancer activity of apigenin against malignant mesothelioma cells. Taken together, our findings suggest that apigenin can induce ROS-dependent necroptotic cell death due to ATP depletion through mitochondrial dysfunction. This study provides us a possible mechanism underlying why apigenin could be used as a therapeutic candidate for treating malignant mesothelioma.

Overexpression of KiSS1 Induces the Proliferation of Hepatocarcinoma and Increases Metastatic Potential by Increasing Migratory Ability and Angiogenic Capacity

  • Cho-Won, Kim;Hong, Kyu, Lee;Min-Woo, Nam;Youngdong, Choi;Kyung-Chul, Choi
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.935-949
    • /
    • 2022
  • Liver cancer has a high prevalence, with majority of the cases presenting as hepatocellular carcinoma (HCC). The prognosis of metastatic HCC has hardly improved over the past decade, highlighting the necessity for liver cancer research. Studies have reported the ability of the KiSS1 gene to inhibit the growth or metastasis of liver cancer, but contradictory research results are also emerging. We, therefore, sought to investigate the effects of KiSS1 on growth and migration in human HCC cells. HepG2 human HCC cells were infected with lentivirus particles containing KiSS1. The overexpression of KiSS1 resulted in an increased proliferation rate of HCC cells. Quantitative polymerase chain reaction and immunoblotting revealed increased Akt activity, and downregulation of the G1/S phase cell cycle inhibitors. A significant increase in tumor spheroid formation with upregulation of β-catenin and CD133 was also observed. KiSS1 overexpression promoted the migratory, invasive ability, and metastatic capacity of the hepatocarcinoma cell line, and these effects were associated with changes in the expressions of epithelial mesenchymal transition (EMT)- related genes such as E-cadherin, N-cadherin, and slug. KiSS1 overexpression also resulted in dramatically increased tumor growth in the xenograft mouse model, and upregulation of proliferating cell nuclear antigen (PCNA) and Ki-67 in the HCC tumors. Furthermore, KiSS1 increased the angiogenic capacity by upregulation of the vascular endothelial growth factor A (VEGF-A) and CD31. Based on these observations, we infer that KiSS1 not only induces HCC proliferation, but also increases the metastatic potential by increasing the migratory ability and angiogenic capacity.

Establishment of in vitro 3-Dimensional Tumor Model for Evaluation of Anticancer Activity Against Human Solid Tumors (항고형암제의 활성평가를 위한 in vitro 삼차원 암세포 배양계의 확립)

  • Lee, Sang-Hak;Lee, Joo-Ho;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.393-399
    • /
    • 2004
  • For the efficient determination of activity against solid tumors, an in vitro tumor model that resembles the condition of in vivo solid tumors, is required. The purpose of this study was to establish a rapid culture method and viability assay for an in vitro 3-dimensional tumor model, multicellular spheroid (MCS). Among 12 human cancer cell lines, a few cell lines including DLD-1 (human colorectal carcinoma cells) formed fully compact MCS which was adequate for in vitro viability assay. DLD-1 MCS showed steady growth reaching $700\;{\mu}m$ diameter after 11 day culture. DLD-1 cells grown as MCS showed significant increase in $G_0/G_1$ phase compared to the monolayer cells (73.9% vs 45.7%), but necrotic regions or apoptotic cells were not observed. The cells cultured as MCS showed resistance to 5-FU (10.3 fold higher $IC_{50}$) compared to monolayers, however, tirapazamine (a hypotoxin) showed similar activity in both culture systems. In summary, MCS may be a valid in vitro model for activity screening of anticancer agents against human solid tumors and also exploitable for studying molecular markers of drug resistance in human solid tumors.