• 제목/요약/키워드: Cancer progression

검색결과 1,568건 처리시간 0.025초

Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression

  • Hong, Jihee;Gwon, Dasom;Jang, Chang-Young
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.481-488
    • /
    • 2022
  • Background: Although the tumor-suppressive effects of ginsenosides in cell cycle have been well established, their pharmacological properties in mitosis have not been clarified yet. The chromosomal instability resulting from dysregulated mitotic processes is usually increased in cancer. In this study, we aimed to investigate the anticancer effects of ginsenoside Rg1 on mitotic progression in cancer. Materials and methods: Cancer cells were treated with ginsenoside Rg1 and their morphology and intensity of different protein were analyzed using immunofluorescence microscopy. The level of proteins in chromosomes was compared through chromosomal fractionation and Western blot analyses. The location and intensity of proteins in the chromosome were confirmed through immunostaining of mitotic chromosome after spreading. The colony formation assays were conducted using various cancer cell lines. Results: Ginsenoside Rg1 reduced cancer cell proliferation in some cancers through inducing mitotic arrest. Mechanistically, it inhibits the phosphorylation of histone H3 Thr3 (H3T3ph) mediated by Haspin kinase and concomitant recruitment of chromosomal passenger complex (CPC) to the centromere. Depletion of Aurora B at the centromere led to abnormal centromere integrity and spindle dynamics, thereby causing mitotic defects, such as increase in the width of the metaphase plate and spindle instability, resulting in delayed mitotic progression and cancer cell proliferation. Conclusion: Ginsenoside Rg1 reduces the level of Aurora B at the centromere via perturbing Haspin kinase activity and concurrent H3T3ph. Therefore, ginsenoside Rg1 suppresses cancer cell proliferation through impeding mitotic processes, such as chromosome alignment and spindle dynamics, upon depletion of Aurora B from the centromere.

The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy

  • Cho, Eunae Sandra;Cha, Yong Hoon;Kim, Hyun Sil;Kim, Nam Hee;Yook, Jong In
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.29-38
    • /
    • 2018
  • During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.

Autophagy in Cervical Cancer: An Emerging Therapeutic Target

  • Pandey, Saumya;Chandravati, Chandravati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.4867-4871
    • /
    • 2012
  • Cervical cancer is a leading cause of morbidity and mortality in women worldwide. Although the human papillomavirus (HPV) is considered the major causative agent of cervical cancer, yet the viral infection alone is not sufficient for cancer progression. The etiopathogenesis of cervical cancer is indeed complex; a precise understanding of the complex cellular/molecular mechanisms underlying the initiation, progression and/or prevention of the uterine cervix is therefore essential. Autophagy is emerging as an important biological mechanism in targeting human cancers, including cervical cancer. Furthermore, autophagy, a process of cytoplasm and cellular organelle degradation in lysosomes, has been implicated in homeostasis. Autophagic flux may vary depending on the cell/tissue type, thereby altering cell fate under stress conditions leading to cell survival and/or cell death. Autophagy may in turn govern tumor metastasis and subsequent carcinogenesis. Inflammation is a known hallmark of cancer. Vascular insufficiency in tumors, including cervical tissue, leads to depletion of glucose and/or oxygen perturbing the osmotic mileu causing extracellular acidosis in the tumor microenvironment that may eventually result in autophagy. Thus, targeted manipulation of complex autophagic signaling may prove to be an innovative strategy in identification of clinically relevant biomarkers in cervical cancer in the near future.

New Therapeutic Schedule for Prostatic Cancer-3 Cells with ET-1 RNAi and Endostar

  • Zhang, Hao-Jie;Qian, Wei-Qing;Chen, Ran;Sun, Zhong-Quan;Song, Jian-Da;Sheng, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10079-10083
    • /
    • 2015
  • Background: Endothelin-1 and Endostar are both significant for the progression, proliferation, metastasis and invasion of cancer. In this paper, we studied the effect of ET-1 RNAi and Endostar in PC-3 prostatic cancer cells. Materials and Methods: The lentiviral vector was used in the establishment of ET-1 knockdown PC-3 cells. Progression and apoptosis were assessed by CKK-8 and flow cytometry, respectively. Transwell assay was used to estimate invasion and signaling pathways were studied by Western blotting. Results: ET-1 mRNA and protein in ET-1 knockdown PC-3 cells were reduced to 26.4% and 22.4% compared with control group, respectively. ET-1 RNAi and Endostar both were effective for the suppression of progression and invasion of PC-3 cells. From Western blotting results, the effects of ET-1 regulation and Endostar on PC-3 cells were at least related to some signaling pathways involving PI3K/Akt/Caspase-3, Erk1/2/Bcl-2/Caspase-3 and MMPs (MMP-2 and MMP-9). Furthermore, combined treatment of ET-1RNAi and Endostar was found to be more effective than single treatment. Conclusions: Both ET-1 RNAi and Endostar can inhibit the progression and invasion of PC-3 cells, but combined treatment might be a better therapeutic schedule.

The Role of Regulatory T Cells in Cancer

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제9권6호
    • /
    • pp.209-235
    • /
    • 2009
  • There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA.

RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment

  • Hong, Suntaek
    • Journal of Cancer Prevention
    • /
    • 제22권4호
    • /
    • pp.203-210
    • /
    • 2017
  • After transcription, RNAs are always associated with RNA binding proteins (RBPs) to perform biological activities. RBPs can interact with target RNAs in sequence- and structure-dependent manner through their unique RNA binding domains. In development and progression of carcinogenesis, RBPs are aberrantly dysregulated in many human cancers with various mechanisms, such as genetic alteration, epigenetic change, noncoding RNA-mediated regulation, and post-translational modifications. Upon deregulation in cancers, RBPs influence every step in the development and progression of cancer, including sustained cell proliferation, evasion of apoptosis, avoiding immune surveillance, inducing angiogenesis, and activating metastasis. To develop therapeutic strategies targeting RBPs, RNA interference-based oligonucleotides or small molecule inhibitors have been screened based on reduced RBP-RNA interaction and changed level of target RNAs. Identification of binding RNAs with high-throughput techniques and integral analysis of multiple datasets will help us develop new therapeutic drugs or prognostic biomarkers for human cancers.

Highlighted STAT3 as a potential drug target for cancer therapy

  • Lee, Haeri;Jeong, Ae Jin;Ye, Sang-Kyu
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.415-423
    • /
    • 2019
  • Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.

The Role of Tripartite Motif Family Proteins in TGF-β Signaling Pathway and Cancer

  • Lee, Ho-Jae
    • Journal of Cancer Prevention
    • /
    • 제23권4호
    • /
    • pp.162-169
    • /
    • 2018
  • $TGF-{\beta}$ signaling plays a tumor suppressive role in normal and premalignant cells but promotes tumor progression during the late stages of tumor development. The $TGF-{\beta}$ signaling pathway is tightly regulated at various levels, including transcriptional and post-translational mechanisms. Ubiquitination of signaling components, such as receptors and Smad proteins is one of the key regulatory mechanisms of $TGF-{\beta}$ signaling. Tripartite motif (TRIM) family of proteins is a highly conserved group of E3 ubiquitin ligase proteins that have been implicated in a variety of cellular functions, including cell growth, differentiation, immune response, and carcinogenesis. Recent emerging studies have shown that some TRIM family proteins function as important regulators in tumor initiation and progression. This review summarizes current knowledge of TRIM family proteins regulating the $TGF-{\beta}$ signaling pathway with relevance to cancer.

Role of Transforming Growth Factor-β in Tumor Invasion and Metastasis

  • Kim, Eun-Sook;Moon, Aree
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.197-205
    • /
    • 2007
  • Cancer metastasis is a major determinant of cancer patient mortality. Mounting evidence favors a strong positive role for $TGF-{\beta}$ in human cancer progression. The complex pattern on cross-talk of $TGF-{\beta}$ and the related other signaling pathways is an important area of investigation that will ultimately contribute to understanding of the bifunctional role of $TGF-{\beta}$ in cancer progression. This review summarizes some of the current understanding of $TGF-{\beta}$ signaling with a major focus in its contribution to the tumor cell invasion and metastasis. Five issues are addressed in this review: (1) $TGF-{\beta}$ signaling, (2) $TGF-{\beta}$ and EMT, (3) $TGF-{\beta}$ and MMP, (4) $TGF-{\beta}$ and Ras, and (5) Role of $TGF-{\beta}$ in invasion and metastasis. Due to the bifunctional cellular effects of $TGF-{\beta}$, as a tumor promoter and a tumor suppressor, more precisely defined $TGF-{\beta}$ signaling pathways need to be elucidated. According to the current literature, $TGF-{\beta}$ is clearly a major factor stimulating tumor progression through a complex spectrum of the interplay and cross-talk between various signaling molecules. Understanding the role of $TGF-{\beta}$ in invasion and metastasis will provide valuable information on establishing strategies to manipulate $TGF-{\beta}$ signaling which should be a high priority for the development of anti-metastatic therapeutics.

Roles of PTEN (Phosphatase and Tensin Homolog) in Gastric Cancer Development and Progression

  • Xu, Wen-Ting;Yang, Zhen;Lu, Nong-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.17-24
    • /
    • 2014
  • Gastric cancer is highly invasive, aggressively malignant, and amongst the most prevalent of all forms of cancer. Despite improved management strategies, early stage diagnosis of gastric cancer and accurate prognostic assessment is still lacking. Several recent reports have indicated that the pathogenesis of gastric cancer involves complex molecular mechanisms and multiple genetic and epigenetic alterations in oncogenes and tumor suppressor genes. Functional inactivation of the tumor suppressor protein PTEN (Phosphatase and Tensin Homolog) has been detected in multiple cases of gastric cancer, and already shown to be closely linked to the development, progression and prognosis of the disease. Inactivation of PTEN can be attributed to gene mutation, loss of heterozygosity, promoter hypermethylation, microRNA- mediated regulation of gene expression, and post-translational phosphorylation. PTEN is also involved in mechanisms regulating tumor resistance to chemotherapy. This review provides a comprehensive analysis of PTEN and its roles in gastric cancer, and emphasizes its potential benefits in early diagnosis and gene therapy-based treatment strategies.