• Title/Summary/Keyword: Cancer diagnostics

Search Result 95, Processing Time 0.024 seconds

Characterization of CEBPA Mutations and Polymorphisms and their Prognostic Relevance in De Novo Acute Myeloid Leukemia Patients

  • Sarojam, Santhi;Raveendran, Sureshkumar;Vijay, Sangeetha;Sreedharan, Jayadevan;Narayanan, Geetha;Sreedharan, Hariharan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3785-3792
    • /
    • 2015
  • The CCAAT/enhancer-binding protein-alpha (CEBPA) is a transcriptional factor that plays a crucial role in the control of proliferation and differentiation of myeloid precursors. This gene was recognized as the target of genetic alterations and were associated with clinical complexity among AML. We here analyze the frequency and types of CEBPA mutations and polymorphisms in a de novo AML patients from South India and tried to find out associations of these variations with different clinical parameters and the prognostic significance in AML. Study was carried out in 248 de novo AML patients, cytogenetic analysis was performed from the bone marrow samples and was karyotyped. PCR-SSCP analysis and sequencing was performed for the detection of CEBPA gene variations. All the statistical analysis was performed using SPSS 17 (statistical package for social sciences) software. Pearson Chi-square test, Mann-Whitney U test, Kaplan-Meier survival analysis and log rank tests were performed. CEBPA mutations were detected in 18% and CEBPA polymorphisms were detected in 18.9% of AML cases studied. Most of the mutations occured at the C terminal region. Polymorphisms were detected in both N and C terminal region. with most common being, c.584_589dup ACCCGC and c.690G>T. A significant association was not observed for the mutation and polymorphism with respect to clinical and laboratory parameters. Survival advantage was observed for the mutated cases compared to non mutated cases, especially for the normal karyotype groups. Polymorphisms has no effect on the survival pattern of AML patients. CEBPA mutation and polymorphisms were observed with similar frequency and was identified in all the FAB subtypes as well as in cytogenetic risk groups in our study population, but CEBPA mutations alone confer a prognostic value for NK AML patients.

siRNA Silencing EZH2 Reverses Cisplatin-resistance of Human Non-small Cell Lung and Gastric Cancer Cells

  • Zhou, Wen;Wang, Jian;Man, Wang-Ying;Zhang, Qing-Wei;Xu, Wen-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2425-2430
    • /
    • 2015
  • Clinical resistance to chemotherapeutic agents is one of the major hindrances in the treatment of human cancers. EHZ2 is involved in drug resistance and is overexpressed in drug-resistant cancer cell lines. In this study, we investigated the effects of EHZ2 on cisplatin -resistance in A549/DDP and AGS/DDP cells. EHZ2 mRNA and protein were found to be significantly overexpressed in A549/DDP and AGS/DDP cells, compared to parental cells. EHZ2 siRNA successfully silenced EHZ2 mRNA and protein expression. Proliferation was inhibited and drug resistance to cisplatin was improved. Flow cytometry showed that silencing of EHZ2 arrested A549/DDP and AGS/DDP cells in the G0/G1 phase, increasing apoptosis, rh-123 fluorescence intensity and caspase-3/8 activities. Silencing of EHZ2 also significantly reduced the mRNA and protein expression levels of cyclin D1 and MDR1,while up-regulating p15, p21, p27 and miR-218 in A549/DPP cells. Furthermore, silencing of EHZ2 also significantly increased the expression level of tumor suppressor factor miR-218. We also found down-regulating EHZ2 expression increased methylation in A549/DDP and AGS/DDP cells. This study demonstrates that drug resistance can be effectively reversed in human cisplatin-resistant lung and gastric cancer cells through delivery of siRNAs targeting EHZ2.

Immunosignature: Serum Antibody Profiling for Cancer Diagnostics

  • Chapoval, Andrei I;Legutki, J Bart;Stafford, Philip;Trebukhov, Andrey V;Johnston, Stephen A;Shoikhet, Yakov N;Lazarev, Alexander F
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4833-4837
    • /
    • 2015
  • Biomarkers for preclinical diagnosis of cancer are valuable tools for detection of malignant tumors at early stages in groups at risk and screening healthy people, as well as monitoring disease recurrence after treatment of cancer. However the complexity of the body's response to the pathological processes makes it virtually impossible to evaluate this response to the development of the disease using a single biomarker that is present in the serum at low concentrations. An alternative approach to standard biomarker analysis is called immunosignature. Instead of going after biomarkers themselves this approach rely on the analysis of the humoral immune response to molecular changes associated with the development of pathological processes. It is known that antibodies are produced in response to proteins expressed during cancer development. Accordingly, the changes in antibody repertoire associated with tumor growth can serve as biomarkers of cancer. Immunosignature is a highly sensitive method for antibody repertoire analysis utilizing high density peptide microarrays. In the present review we discuss modern methods for antibody detection, as well as describe the principles and applications of immunosignature in research and clinical practice.

Fabrication of Cell Chip through Eco-friendly Process (전해질 고분자 코팅 표면을 이용한 세포칩 제작)

  • Jeong, Heon-Ho;Song, Hwan-Moon;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • This study presents a fabrication method of cell-chip using aqueous solution based surface modification. The applications of cell-chip have potential for fundamental study of genetics, cell biology as well as cancer diagnostics and treatment. Conventional methods for fabrication of cell-chip have been limited in economic loss and environmental pollution because of the use of harsh organic solvent, complex process of silicon technology, and expensive equipment. In order to fabricate cell chip, we have proposed simple and eco-friendly process combined polyelectrolyte multilayer coating with microcontact printing. For the proof of concept, the cell chip can be applied to analyze the different expression of cell surface glycans and derivatives between cancer and normal cells. Our proposed method is useful technique for the application of novel cancer diagnostics and basic medical engineering.

Targeting of COX-2 Expression by Recombinant Adenovirus shRNA Attenuates the Malignant Biological Behavior of Breast Cancer Cells

  • Tu, Bo;Ma, Ting-Ting;Peng, Xiao-Qiong;Wang, Qin;Yang, Hong;Huang, Xiao-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8829-8836
    • /
    • 2014
  • Background: Cyclooxygenase-2 (COX-2), considered to have tumor-promoting potential, is highly expressed in a variety of tumors, including breast cancer. Since the functions and action mechanisms of COX-2 in breast cancer have not been fully elucidated, in the present study, the effects of target inhibiting COX-2 with recombinant adenovirus Ad-COX-2-shRNA on malignant biological behavior were investigated in representative cell lines. Materials and Methods: Breast cancer MDA-MB-231 and MCF-7 cells were transfected with Ad-COX-2-shRNA and COX-2 expression was tested by RT-PCR and Western blotting. Changes in proliferation, apoptosis and invasion of breast cancer cells were detected with various assays including MTT, colony forming, flowcytometry and Transwell invasion tests. The expression of related proteins involved in the cell cycle, apoptosis, invasion and signaling pathways was assessed by Western blotting. Results: COX-2 expression was significantly reduced in both breast cancer cell lines infected with Ad-COX-2-shRNA, with obvious inhibition of proliferation, colony forming rate, G2/M phase passage and invasion, as well as induction of apoptosis, in MDA-MB-231 and MCF-7 cells, respectively. At the same time, proteins related to the cell cycle, anti-apoptosis and invasion were significantly downregulated. In addition, c-myc expression and phosphorylation activation of Wnt/${\beta}$-catenin and p38MAPK pathways were reduced by the Ad-COX-2-shRNA. Conclusions: COX-2 expression is associated with proliferation, apoptosis and invasion of breast cancer cells, and its mechanisms of action involve regulating expression of c-myc through the p38MAPK and Wnt/${\beta}$-catenin pathways.

A review on Clinical Trials by Using a Computerized Tongue Diagnosis System (국내외 설진기를 활용한 인간 대상 연구현황)

  • Lee, Hyeon-Joo;Kweon, Na-Yeon;Nam, Dong-Hyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Objectives The purpose of this study was to survey the status of clinical use of a computerized tongue diagnosis system (CTDS) Methods We searched domestic/international articles using the CTDS from online medical databases including OASIS, NDSL and pubmed. We selected articles on clinical application or reliability of CTDS but excluded articles on mechanical design or software programming for developing a new CTDS. Finally we found 15 articles and classified the articles according to the study purpose. Results Out of the 15 articles, 8 were focused on the clinical application including halitosis, cold/heat syndrome, lung cancer, xerostomia etc. Other 5 articles were aimed at evaluating and improving reliability of CTDS. The other 2 articles were studied for development of differential diagnostic criteria on tongue coating thickness. Conclusion We found out that until now the researches on clinical application of CTDS mainly had been performed for producing a variety of CTDSs. Considering the importance of the tongue color in the traditional Korean medicine, we suggest that at first standard operating procedure for CTDS be developed and researches to develop differential diagnostic criteria on tongue body/coating color be performed and then explore its applications.

IL-12 Regulates B7-H1 Expression in Ovarian Cancer-associated Macrophages by Effects on NF-κB Signalling

  • Xiong, Hai-Yu;Ma, Ting-Ting;Wu, Bi-Tao;Lin, Yan;Tu, Zhi-Guang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5767-5772
    • /
    • 2014
  • Background and Aim: B7-H1, a co-inhibitory molecule of the B7 family, is found aberrantly expressed in ovarian cancer cells and infiltrating macrophage/dendritic-like cells, and plays a critical role in immune evasion by ovarian cancer. IL-12, an inducer of Th1 cell development, exerts immunomodulatory effects on ovarian cancer. However, whether IL-12 regulates B7-H1 expression in human ovarian cancer associated-macrophages has not been clarified. Therefore, we investigated the effects of IL-12 on the expression of B7-H1 in ovarian cancer-associated macrophages and possible mechanisms. Methods: PMA induced THP-1-derived macrophages or human monocyte-derived macrophages were treated with recombinant IL-12 (rIL-12) or infected with adenovirus carrying human IL-12 gene (Ad-IL-12-GFP) for 24 h, then cocultured with the SKOV3 ovarian cancer cell line for another 24 h. Macrophages were collected for real-time PCR and Western blot to detect the expression of B7-H1, and activation of the NF-${\kappa}B$ signaling pathway. Moreover, supernatants were collected to assay for IL-12, IFN-${\gamma}$ and IL-10 by ELISA. In addition, monocyte-derived macrophages treated with IFN-${\gamma}$ were cocultured with SKOV3 and determined for the expression of B7-H1. Furthermore, the expression of B7-H1 in monocyte-derived macrophages was also evaluated after blocking NF-${\kappa}B$ signaling. Results: The expression of B7-H1 was significantly upregulated in monocyte-derived macrophages treated with rIL-12 or Ad-IL-12-GFP compared with the control groups (p<0.05), accompanied by a remarkable upregulation of IFN-${\gamma}$ (p<0.05), a marked downregulation of IL-10 (p<0.05) and activation of NF-${\kappa}B$ signaling. However, the upregulation of B7-H1 was inhibited by blocking the NF-${\kappa}B$ signaling pathway (p<0.05). Expression of B7-H1 was also increased (p<0.05) in monocyte-derived macrophages treated with IFN-${\gamma}$ and cocultured with SKOV3. By contrast, the expression of B7-H1 in THP-1-derived macrophages was significantly decreased when treated in the same way as monocyte-derived macrophages (p<0.05), and IL-10 was also significantly decreased but IFN-${\gamma}$ was almost absent. Conclusions: IL-12 upregulates the expression of B7-H1 in monocyte-derived macrophages, which is possible though inducing the secretion of IFN-${\gamma}$ and further activating the NF-${\kappa}B$ signal pathway. However, IL-12 downregulates the expression of B7-H1 in THP-1-derived macrophages, associated with a lack of IFN-${\gamma}$ and inhibition of expression of IL-10.

The Reverse Proteomics for Identification of Tumor Antigens

  • Lee, Sang-Yull;Jeoung, Doo-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.879-890
    • /
    • 2007
  • The identification of tumor antigens is essential for the development of anticancer therapeutic vaccines and clinical diagnosis of cancer. SEREX (serological analysis of recombinant cDNA expression libraries) has been used to identify such tumor antigens by screening sera of patients with cDNA expression libraries. SEREX-defined antigens provide markers for the diagnosis of cancers. Potential diagnostic values of these SEREX-defined antigens have been evaluated. SEREX is also a powerful method for the development of anticancer therapeutics. The development of anticancer vaccines requires that tumor antigens can elicit antigen-specific antibodies or T lymphocytes. More than 2,000 antigens have been discovered by SEFEX. Peptides derived from some of these antigens have been evaluated in clinical trials. This review provides information on the application of SEREX for identification of tumor-associated antigens (TAA) for the development of cancer diagnostics and anticancer therapeutics.

Serum Periplakin as a Potential Biomarker for Urothelial Carcinoma of the Urinary Bladder

  • Matsumoto, Kazumasa;Ikeda, Masaomi;Matsumoto, Toshihide;Nagashio, Ryo;Nishimori, Takanori;Tomonaga, Takeshi;Nomura, Fumio;Sato, Yuichi;Kitasato, Hidero;Iwamura, Masatsugu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9927-9931
    • /
    • 2014
  • The objectives of this study were to examine serum periplakin expression in patients with urothelial carcinoma of the urinary bladder and in normal controls, and to examine relationships with clinicopathological findings. Detection of serum periplakin was performed in 50 patients and 30 normal controls with anti-periplakin antibodies using the automatic dot blot system, and a micro-dot blot array with a 256 solid-pin system. Levels in patients with urothelial carcinoma of the urinary bladder were significantly lower than those in normal controls (0.31 and 5.68, respectively; p<0.0001). The area under the receiver-operator curve level for urothelial carcinoma of the urinary bladder was 0.845. The sensitivity and specificity, using a cut-off point of 4.045, were 83.7% and 73.3%, respectively. In addition, serum periplakin levels were significantly higher in patients with muscle-invasive cancer than in those with nonmuscle-invasive cancer (P = 0.03). In multivariate Cox proportional hazards regression analysis, none of the clinicopathological factors was associated with an increased risk for progression and cancer-specific survival. Examination of the serum periplakin level may play a role as a non-invasive diagnostic modality to aid urine cytology and cystoscopy.

Molecular Diagnosis for Personalized Target Therapy in Gastric Cancer

  • Cho, Jae Yong
    • Journal of Gastric Cancer
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2013
  • Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy.