• 제목/요약/키워드: Cancer cell line

검색결과 1,450건 처리시간 0.029초

Anti-Proliferation Effects of Benzimidazole Derivatives on HCT-116 Colon Cancer and MCF-7 Breast Cancer Cell Lines

  • Al-Douh, Mohammed Hadi;Sahib, Hayder B.;Osman, Hasnah;Hamid, Shafida Abd;Salhimi, Salizawati M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.4075-4079
    • /
    • 2012
  • Benzimidazoles 1-4 were obtained using modified synthesis methods and studied for their ability to inhibit cell proliferation of colon cancer cell HCT-116 and breast cancer cell MCF-7 using MTT assays. In the HCT-116 cell line, benzimidazole 2 was found to have an $IC_{50}$ value of $16.2{\pm}3.85{\mu}g/mL$ and benzimidazole 1 a value of $28.5{\pm}2.91{\mu}g/mL$, while that for benzimidazole 4 was $24.08{\pm}0.31{\mu}g/mL$. In the MCF-7 cell line, benzimidazole 4 had an $IC_{50}$ value of $8.86{\pm}1.10{\mu}g/mL$, benzimidazole 2 a value of $30.29{\pm}6.39{\mu}g/mL$, and benzimidazole 1 a value of $31.2{\pm}4.49{\mu}g/mL$. Benzimidazole 3 exerted no cytotoxity in either of the cell lines, with $IC_{50}$ values $>50{\mu}g/mL$. The results suggest that benzimidazoles derivatives may have chemotherapeutic potential for treatment of both colon and breast cancers.

가감길경탕이 인체 폐암세포의 증식 및 사멸에 미치는 영향에 관한 연구 (Effects of Gagamgilgyung-tang on the Proliferation and Apoptosis of Human Lung Cancer Cell)

  • 이충섭;정희재;신순식;정승기;이형구
    • 대한한의학회지
    • /
    • 제23권1호
    • /
    • pp.24-36
    • /
    • 2002
  • Objectives: The chemotherapeutic potential of Gagamgilgyung-tang for the treatment of human lung cancer, the antitumorigenic effects of Gagamgilgyung-tang on the proliferation and apoptosis of human lung cancer cell line A427 were investigated using molecular biological approaches, Methods: To determine Gagamgilgyung-tang concentrations which do not evoke cytotoxic damage to the cell line, cell viability was examined by MTT assay. To prove Gagamgilgyung-tang's antitumorigenic potential to human lung cancer, [3H]thymidine incorporation assay, trypan blue exclusion and Cpp32 protease activity assays and quantitative RT-PCR analysis were examined. Results: While A427 cells treated with $0.1-2.0{\mu\textrm{g}}/ml$ of Gagamgilgyung-tang showed no recognizable effect, marked reductions of cell viability were detected at concentrations over $5.0{\;}\mu\textrm{g}/ml$. DNA replication of A427 cells was inhibited by Gagamgilgyung-tang in a dose-dependent manner and Gagamgilgyung-tang induced the G1 cell cycle arrest through inhibition of DNA replication. Gagamgilgyung-tang triggered apoptotic cell death of A427 and enhanced the apoptotic sensitivity of the cells that were injured by a DNA damage-inducing chemotherapeutic drug etoposide. Gagamgilgyung-tang induces expression of growth-inhibiting genes such as p53 and p21/Wafl whereas it inhibited expression of growth-promoting genes such as c-Myc and Cyclin D1. Expression of a representative apoptosis-inducing gene Bax was also found to be induced by Gagamgilgyung-tang while apoptosis-suppressing Bcl-2 expression was not changed. Conclusions: Gagamgilgyung-tang could suppress the abnormal growth of tumor cells by suppressing the survival of genetically altered cells via induction of apoptosis. This study suggests that Gagamgilgyung-tang might have an antitumorigenic potential to human lung cancer cells, which might be associated with its growth-inhibiting and apoptosis-inducing properties.

  • PDF

Anti-tumor activities of Panax quinquefolius saponins and potential biomarkers in prostate cancer

  • He, Shan;Lyu, Fangqiao;Lou, Lixia;Liu, Lu;Li, Songlin;Jakowitsch, Johannes;Ma, Yan
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.273-286
    • /
    • 2021
  • Background: Prostate carcinoma is the second most common cancer among men worldwide. Developing new therapeutic approaches and diagnostic biomarkers for prostate cancer (PC) is a significant need. The Chinese herbal medicine Panax quinquefolius saponins (PQS) have been reported to show anti-tumor effects. We hypothesized that PQS exhibits anti-cancer activity in human PC cells and we aimed to search for novel biomarkers allowing early diagnosis of PC. Methods: We used the human PC cell line DU145 and the prostate epithelial cell line PNT2 to perform cell viability assays, flow cytometric analysis of the cell cycle, and FACS-based apoptosis assays. Microarray-based gene expression analysis was used to display specific gene expression patterns and to search for novel biomarkers. Western blot and quantitative real-time PCR were performed to demonstrate the expression levels of multiple cancer-related genes. Results: Our data showed that PQS inhibited the viability of DU145 cells and induced cell cycle arrest at the G1 phase. A significant decrease in DU145 cell invasion and migration were observed after 24 h treatment by PQS. PQS up-regulated the expression levels of p21, p53, TMEM79, ACOXL, ETV5, and SPINT1 while it down-regulated the expression levels of bcl2, STAT3, FANCD2, DRD2, and TMPRSS2. Conclusion: PQS promoted cells apoptosis and inhibited the proliferation of DU145 cells, which suggests that PQS may be effective for treating PC. TMEM79 and ACOXL were expressed significantly higher in PNT2 than in DU145 cells and could be novel biomarker candidates for PC diagnosis.

구강 편평세포암종에서 Taxol과 Cyclosporin A의 세포사멸 상승 작용 효과 (SYNERGISTIC APOPTOTIC EFFECT OF TAXOL ON ORAL SQUAMOUS CELL CARCINOMA BY CYCLOSPORIN A)

  • 서민정;한세진;이재훈
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권5호
    • /
    • pp.394-404
    • /
    • 2007
  • Oral squamous cell carcinoma is the most prevalent oral cancer, which is characterized by its high metastasis and recurrent rates and poor prognosis. Taxol is an anticancer agent which is microbial products extracted from jew tree. It combines with the tubulin and induces apoptosis by inhibiting mitosis of cell with microtubule stabilization. Recently, it was reported to be effective in various solid tumors, but only very slight effect has been seen in oral squamous cell carcinomas due to its cell-specific potencies. Cyclosporin A is used as immune suppressant and is being applied in anticancer therapy as its mechanism of induction of change of apoptotic process in various cells have been known. In this study, oral squamous cell carcinoma HN22 cell line was used for in vitro experiment and as for the experimental group taxol and cyclosporin A were applied alone and to observe the synergistic effect of apoptosis, Taxol and cyclosporin A were coadministered with different concentration of taxol for comparison. The results were obtained as follow: 1. There was no difference in Bcl-2, Bax, caspase 3, 8, 9 mRNA expression when cyclosprin A or taxol was applied alone to HN 22 cell line. 2. Caspase 3, 9 mRNA expression was prominently increased when cyclosprin A and taxol were applied together to cancer cell. 3. No significant difference was observed when cyclosporin A and taxol($1{\mu}g/ml$ and $3{\mu}g/ml$) were applied together to cancer cell line. 4. No significant difference was seen in Bcl-2, Bax, and caspase 8 mRNA expression in all the groups of in vitro experiments. 5. When cyclosporin A was applied alone in vivo study on the nude mice, histopathologi cal findings was similar to those of the control group. Oral squamous cell carcinoma induced by inoculation of HN 22 cell line was not reduced after treatment of cyclosporin A. 6. When taxol was applied alone, the islands of squamous cell carcinoma still remained, which meant insignificant healing effect. There was a lesser volume increase compared with the cyclosporin A alone. 7. When taxol and cyclosporin A were applied together, the connective tissue and calcification were seen in the histopathologic findings. Oral squamous cell carcinoma was decreased and cancer cell was disappeared. In observing the tumor mass change with time, there was a gradual decreased size and healing features. As the results of the in vitro experiment, it could conclud that only when the two agents are applied together, mitochondria-mediated apoptosis occurred by considerable increase of caspase 3, 9 mRNA expression, irrespectable of the concentration of taxol. In vivo experiment, there was a discrete synergistic effect when the two agents were applied together. But single use of cyclosporin A was not effective in this study. Based on the results of this experiment, if further clinical studies are done, taxol and cyclosporin A could be effectively used in treatment of oral squamous cell carcinomas.

금은화 약침의 항암효과에 관한 연구 (The Effects of Anti-cancer Response of Lonicerae Flos Herbal-acupuncture)

  • 박희수
    • Journal of Acupuncture Research
    • /
    • 제22권5호
    • /
    • pp.91-97
    • /
    • 2005
  • This study was performed to investigate the effects of anti-cancer response of Lonicerae Flos Herbal-acupuncture. Experimental studies were evaluated through the anti-cancer response activities such as, cell viability, DNA fragmentation, and Apoptosis The results obtained were summarized as follows : 1. Lonicerae Flos Herbal-acupuncture($>300mg/m{\ell}$) could lead cancer cell to cell death. 2. Lonicerae Flos herbal-acupuncture($400mg/m{\ell}$) caused DNA cleavage. 3. Lonicerae Flos herbal-acupuncture($400mg/m{\ell}$) caused apoptosis in the cancer cell line. According to above mentioned results, Lonicerae Flos Herbal- acupunctuer is expected bo by effective for anticancer response.

  • PDF

Somatic mutation patterns and compound response in cancers

  • He, Ningning;Kim, Nayoung;Yoon, Sukjoon
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.97-102
    • /
    • 2013
  • The use of various cancer cell lines can recapitulate known tumor-associated mutations and genetically define cancer subsets. This approach also enables comparative surveys of associations between cancer mutations and drug responses. Here, we analyzed the effects of ~40,000 compounds on cancer cell lines that showed diverse mutation-dependent sensitivity profiles. Over 1,000 compounds exhibited unique sensitivity on cell lines with specific mutational genotypes, and these compounds were clustered into six different classes of mutation-oriented sensitivity. The present analysis provides new insights into the relationship between somatic mutations and selectivity response of chemicals, and these results should have applications related to predicting and optimizing thera-peutic windows for anti-cancer agents.

Apoptosis-Inducing Activity of HPLC Fraction from Voacanga globosa (Blanco) Merr. on the Human Colon Carcinoma Cell Line, HCT116

  • Acebedo, Alvin Resultay;Amor, Evangeline Cancio;Jacinto, Sonia Donaldo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.617-622
    • /
    • 2014
  • Voacanga globosa (Blanco), a plant endemic to the Philippines, is traditionally used especially by indigenous people of Bataan in the treatment of ulcers, wounds and tumorous growths. This study aimed to provide scientific evidence to therapeutic properties by determining cytotoxic and pro-apoptotic activity of HPLC fractions from leaves on HCT116 human colon carcinoma and A549 human lung carcinoma cell lines. Ethanolic extraction was performed on V globosa leaves followed by hexane and ethyl acetate partitioning. Silica gel column chromatography and high performance liquid chromatography (HPLC) produced MP1, MP2 and MP3 fractions. Cytotoxic activity of the fractions was determined through MTT assay against the cancer cell lines HCT116 and A549 and the non-cancer AA8 Chinese hamster ovarian cell line. Pro-apoptotic activities of the most active fractions were further assessed through DAPI staining, TUNEL assay and JC-1 mitochondrial membrane potential assay with HCT116 cells. While the MPI fraction exerted no significant activity against all cell lines tested, MP2 and MP3 fractions demonstrated high toxicity against HCT116 and A549 cells. The MP3 fraction induced formation of apoptotic bodies, condensed DNA and other morphological changes consistent with apoptosis of HCT116 cells and TUNEL assay showed significant increase in DNA fragmentation over time. In these cells, the MP3 fraction also induced mitochondrial membrane destabilization, which is generally associated with the beginning of apoptosis. Phytochemical analysis demonstrated the presence only of saponins and terpenoids in the MP3 fraction. The results indicate that the MP3 fraction exerts cytotoxic activity on HCT116 cells via induction of apoptosis triggered by loss of mitochondrial membrane potential crucial for cell survival.

Adult Non Hodgkin's Lymphoma Patients: Experience from a Tertiary Care Cancer Centre in North East India

  • Hazarika, Munlima;Iqbal, Asif;Krishnatreya, Manigreeva;Sharma, Jagannath Dev;Bhuyan, Chidananda;Saikia, Bhargab Jyoti;Roy, Partha Sarathi;Das, Rashmi;Nandy, Pintu;Kataki, Amal Chandra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2879-2881
    • /
    • 2015
  • There is paucity of data on non Hodgkin's lymphoma (NHL) from our population in North-East India. In this retrospective study, patients were consecutively followed-up to see the clinic-pathological pattern of NHL, various responses, and pattern of relapses to first line treatment with chemotherapy. All patients in the present study received standard regimen of cyclophosphamde, doxorubicin, vincristine, prednisolone (CHOP) with or without rituximab (R-CHOP) as per our institutional protocol as first line therapy. Our study has shown that, in our adult population, the majority of NHL cases present with stage II and stage III disease and extra nodal involvement, B-cell lymphomas and diffuse large cell lymphomas being the most common subtypes. International prognostic index was a significant factor for varied responses to treatment. The majority of relapses after complete remission occurred in the first year.

Metabolic perturbation of an Hsp90 C-domain inhibitor in a lung cancer cell line, A549 studied by NMR-based chemometric analysis

  • Hur, Su-Jung;Lee, Hye-Won;Shin, Ai-Hyang;Park, Sung Jean
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.10-14
    • /
    • 2014
  • Hsp90 is a good drug target molecule that is involved in regulating various signaling pathway in normal cell and the role of Hsp90 is highly emphasized especially in cancer cells. Thus, much efforts for discovery and development of Hsp90 inhibitor have been continued and a few Hsp90 inhibitors targeting the N-terminal ATP binding site are being tested in the clinical trials. There are no metabolic signature molecules that can be used to evaluate the effect of Hsp90 inhibition. We previously found a potential C-domain binder named PPC1 that is a synthetic small molecule. Here we report the metabolomics study to find signature metabolites upon treatment of PPC1 compound in lung cancer cell line, A549 and discuss the potentiality of metabolomic approach for evaluation of hit compounds.

인간 전립선암 PC-3 세포에서 Compound K에 의한 세포주기 조절 및 세포사멸 유전자 발현 변화 (Profile of Gene Expression Changes Treated with Compound K Induced Cell Cycle Arrest and Cell Death of Prostate Cancer PC-3 Cell Line)

  • 김광연;박광일;안순철
    • 대한한의학방제학회지
    • /
    • 제29권4호
    • /
    • pp.267-275
    • /
    • 2021
  • Objectives : Previously, we reported that compound K isolated from fermented ginseng by Aspillus oryzae has a wide biochemical and pharmacological effect, including anti-cancer activity in prostate cancer PC-3 cells. Despite these findings, its signaling pathway and gene expression pattern are not clearly understood. Methods : To confirm the gene expression study of treated with compound K in PC-3 cells, a cDNA microarray chip composed of 44K human cDNA probes was used. MTT assay, western blot analysis, propidium iodide staining, and annexin V/propidium iodide staining were analyzed. Results : We confirmed the differences of gene expression profiles. Then, we analyzed with the cell cycle arrest, cell death and cell proliferation related genes using DAVID database. Conclusions : Our finding should be useful for understanding genome-wide expression patterns of compound K-mediated cell cycle arrest toward induction of cell death and be helpful for finding future cancer therapeutic targets for prostate cancer cells.