• Title/Summary/Keyword: Cancer cell growth

Search Result 2,302, Processing Time 0.028 seconds

Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

The Growth Inhibition Effect of L-1210 and S-180 Cancer Cell Lines by the Extract from Anemarrhena Asphodeloides (지모(知母) 추출물이 L-1210 및 S-180 암세포주 성장 억제에 미치는 영향)

  • Yim, Chi-Hye;Cho, Jae-Seung;Kim, Hyo-Soo;Kwon, Seung-Man;Kim, Shin;Kim, Il-Hwan;Park, Hye-Sun
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2007
  • 1. Objective This study was aimed to screen the potential antitumor activity of one kinds of Korean medicinal herb extracts against cancer cell lines and to evaluate the growth inhibition effect of L-1210 and S-180 cancer cell lines. 2. Methods It confirmed Anemarrhena asphodeloides extracts to screen the potential antitumor activity. Then, it was extracted with 4 kinds of solvents ; hexane, ethyl acetate, butanol and $H_2O$, and the Growth inhibition effect of these extracts were determined against cancer cell and normal cell. The results were as follows : The IC50(50% inhibitory concentration) values of Anemarrhena asphodeloides extracts were shown to be $253{\mu}g/ml$ against L-1210 cell lines. The IC50 values of ethyl acetate extracts were shown to be $915{\mu}g/ml$ against L-1210 cell lines. The IC50 values of butanol extracts were shown to be $52.3{\mu}g/ml$, $485{\mu}g/ml$ against L-1210, S-180 cell lines, respectively. The butanol extracts were more selectively effective than other extracts to cancer cell lines. 3. Conclusion From these data, it could be concluded that the Anemarrhena asphodeloides extracts to the Growth inhibition effect of L-1210 and S-180 cancer cell lines.

  • PDF

Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells

  • Kwak, Youngeun;Ju, Jihyeung
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS: Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS: Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and $350{\mu}g/ml$) and completely abolished the colony formation in soft agar (at the concentration of $350{\mu}g/ml$). Treatment with PLE at the $350{\mu}g/ml$ concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to $350{\mu}g/ml$ was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS: These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo.

Effects of Euphorbiae lathyridis Semen on cell apoptosis in HT-29 human colon cancer cells (속수자가 HT-29 대장암세포의 활성 및 세포사멸에 미치는 영향)

  • Lee, Jae-Hyun;Jung, Sun-Ju;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.65-72
    • /
    • 2007
  • Objectives : In this study, we investigate that Euphorbiae lathyridis Semen extract contributes to growth inhibitory effect and anti-cancer activity on the HT-29 human colon cancer cells. Methods : Euphorbiae lathyridis Semen was extracted from the Semen of the plant using 80% Methanol. The Euphorbiae lathyridis Semen extract was treated to different concentrations for 24 hr, 4Shr or 72hr. Growth inhibitory effect was analyzed by measuring FACS study and MTT assay. Cell apoptosis was confirmed by surveying caspases cascades activation using Westem blot. Results : Exposure to Euphorbiae lathyridis Semen extract (0.4mg/ml) results in an inhibitory effect on cell growth in HT-29 cells. Growth inhibition by Euphorbiae lathyridis Semen extract in HT-29 cells was related with the inhibition of proliferation and induction of apoptosis. The Euphorbiae lathyridis Semen extract induces DNA fragmentation in HT-29 cells. Furthermore, Euphorbiae lathyridis Semen extract induces cell apoptosis through the activation of caspases-3, caspase-9 and PARP cleavage. Conclusion : Euphorbiae lathyridis Semen extract induces apoptosis in human colon cancer cells, therefore, we suggest that Euphorbiae lathyridis Semen extract can be used as a novel class of anti-cancer drugs.

  • PDF

Early Growth Response Protein-1 Involves in Transforming Growth factor-β1 Induced Epithelial-Mesenchymal Transition and Inhibits Migration of Non-Small-Cell Lung Cancer Cells

  • Shan, Li-Na;Song, Yong-Gui;Su, Dan;Liu, Ya-Li;Shi, Xian-Bao;Lu, Si-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4137-4142
    • /
    • 2015
  • The zinc finger transcription factor EGR 1 has a role in controlling synaptic plasticity, wound repair, female reproductive capacity, inflammation, growth control, apoptosis and tumor progression. Recent studies mainly focused on its role in growth control and apoptosis, however, little is known about its role in epithelial-mesenchymal transition (EMT). Here, we aim to explore whether EGR 1 is involved in TGF-${\beta}1$-induced EMT in non-smallcell lung cancer cells. Transforming growth factor (TGF)-${\beta}1$ was utilized to induce EMT in this study. Western blotting, RT-PCR, and transwell chambers were used to identify phenotype changes. Western blotting was also used to observe changes of the expression of EGR 1. The lentivirus-mediated EGR 1 vector was used to increase EGR 1 expression. We investigated the change of migration to evaluate the effect of EGR 1 on non-small-cell lung cancer cells migration by transwell chambers. After stimulating with TGF-${\beta}1$, almost all A549 cells and Luca 1 cells (Non-small-cell lung cancer primary cells) changed to mesenchymal phenotype and acquired more migration capabilities. These cells also had lower EGR 1 protein expression. Overexpression of EGR 1 gene with EGR 1 vector could decrease tumor cell migration capabilities significantly after adding TGF-${\beta}1$. These data s howed an important role of EGR 1 in the EMT of non-small-cell lung cancer cells, as well as migration.

Growth Inhibition and G2/M Phase Cell Cycle Arrest by 3,4,5-Trimethoxy-4'-bromo-cis-stilbene in Human Colon Cancer Cells

  • Heo, Yeon-Hoi;Min, Hye-Young;Kim, Sang-Hee;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2007
  • Resveratrol (3,5,4’-trihydroxy-trans-stilbene), a naturally occurring phytoallexin abundant in grapes and several plants, has been shown to be active in inhibiting proliferation and inducing apoptosis in several human cancer cell lines. On the line of the biological activity of resveratrol, a variety of resveratrol analogs were synthesized and evaluated for their growth inhibitory effects against several human cancer cell lines. In the present study, we found that one of the resveratrol analogs, 3,4,5-trimethoxy-4’-bromo-cis-stilbene, markedly suppressed human colon cancer cell proliferation (EC$_{50}$ = 0.01 ${\mu}$g/ml), and the inhibitory activity was superior to its corresponding trans-isomer (EC$_{50}$ = 1.6 ${\mu}$g/ml) and resveratrol (EC$_{50}$ = 18.7 ${\mu}$g/ml). Prompted by the strong growth inhibitory activity in cultured human colon cancer cells (Col2), we investigated its mechanism of action. 3,4,5-Trimethoxy-4’-bromo-cis-stilbene induced arrest of cell cycle progression at G2/M phase and increased at sub-G1 phase DNA contents of the cell cycle in a time- and dose-dependent manner. Colony formation was also inhibited in a dose-dependent manner, indicating the inhibitory activity of the compound on cell proliferation. Moreover, the morphological changes and condensation of the cellular DNA by the treatment of the compound were well correlated with the induction of apoptosis. These data suggest the potential of 3,4,5-trimethoxy-4’-bromo-cis-stilbene might serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and inducing apoptosis for the human colon cancer cells.

p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

  • Shrestha, Mohan;Park, Pil-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.487-498
    • /
    • 2016
  • Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.

Culture of Endothelial Cells by Transfection with Plasmid Harboring Vascular Endothelial Growth Factor

  • Chang, Sungjaae;Sohn, Insook;Park, Inchul;Sohn, Youngsook;Hong, Seokil;Choe, Teaboo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.106-109
    • /
    • 2000
  • Vascular endothelial cells (EGs) are usually difficult to culture to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement(ECGS). The expression of VEGF by HUVEC tansfected with Vegf GENE was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS. However, when the culture medium was supplied with 2.5 ng/ml of basic fibroblast growth factor (bFGF), a synergistic effect effect of VEGE and bFGF was observed. In this case, the final cell density was recovered was recovered up to about 78% of maxium value.

  • PDF

Arrest of Cell Growth by Inhibition of Endogenous Reverse Transcription Activity in Cancer and Somatic Cell Lines (사람의 암세포주 및 정상세포주에서 역전사 효소의 억제에 의한 세포 성장의 제한)

  • Mi-Jeong Kim;Sung-Ho Lee;Jong-Kuen Park;Byeong-Gyun Jeon
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.365-376
    • /
    • 2024
  • The present study assessed the cytotoxic effects on cell growth and senescence in human cancer (A-549, AGS, HCT-116, MDA-MB-231, and U 87-MG) and normal (MRC-5 and mesenchymal stem cells) cell lines treated with efavirenz (EFA), an inhibitor of non-nucleoside reverse transcriptase (RTase). Following EFA treatment, the half-maximal inhibitory concentration (IC50) values were approximately 15 µM, and the IC50 value was significantly (p<0.05) lower in the cancer cell lines, compared to normal cell lines. After determining the IC50 values against EFA, each cell line was treated with 15 µM EFA for up to one week. Significant (p<0.05) decreases in endogenous RTase and telomerase activity were observed in the cancer cell lines. RTase and telomerase activity were absent or detected at very low levels in both EFA-untreated and treated MRC-5 and MSC normal cells. The cell doubling time (CDT) was also significantly (p<0.05) prolonged by the decreased cell growth rate in the EFA-treated cancer cell lines compared to the untreated cell lines. Furthermore, EFA-treated cancer cells displayed a high number of cells with a high intensity of senescence-associated ß-galactosidase activity (SA-ß-gal activity), compared to the untreated cells. The present study showed that inhibition of RTase activity induces cellular senescence and arrests cell growth in human cancer cell lines; however, normal cell lines showed greater tolerance against EFA. RTase treatment could offer optional chemotherapy for cancer treatment in human cancer cell lines with high RTase activity.