• 제목/요약/키워드: Cancer biomarker

검색결과 444건 처리시간 0.024초

Interferon Stimulated Gene - ISG15 is a Potential Diagnostic Biomarker in Oral Squamous Cell Carcinomas

  • Laljee, Rupesh Puthenparambil;Muddaiah, Sunil;Salagundi, Basavaraj;Cariappa, Ponappa Muckatira;Indra, Adarsh Surendran;Sanjay, Venkataram;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.1147-1150
    • /
    • 2013
  • Background: Cancer diagnostic biomarkers have a wide range of applications that include early detection of oral precancerous lesions and oral squamous cell carcinomas, and assessing the metastatic status of lesions. The interferon stimulated ISG15 gene encodes an ubiquitin-like protein, which conjugates to stabilize activation status of associated proteins. Hence a deregulated expression of ISG15 may promote carcinogenesis. Indeed overexpression of ISG15 has been observed in several cancers and hence it has been proposed as a strong candidate cancer diagnostic biomarker. Given the emerging relationship between malignant transformation and ISG15, we sought to examine the expression pattern of this gene in tumor biopsies of oral squamous cell carcinoma (OSCC) tissues collected from Indian patients. Materials and Methods: Total RNA isolated from thirty oral squamous cell carcinoma tissue biopsy samples were subjected to semi-quantitative RT-PCR with ISG15 specific primers to elucidate the expression level. Results: Of the thirty oral squamous cell carcinomas that were analyzed, ISG15 expression was found in twenty four samples (80%). Twelve samples expressed low level of ISG15, six of them expressed moderately, while the rest of them expressed very high level of ISG15. Conclusions: To the best of our knowledge, the results show for the first time an overexpression of ISG15 in up to 80% of oral squamous cell carcinoma tissues collected from Indian patients. Hence ISG15 may be explored for the possibility of use as a high confidence diagnostic biomarker in oral cancers.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Relationship between Colonic Polyp Type and the Neutrophil/Lymphocyte Ratio as a Biomarker

  • Karaman, Hatice;Karaman, Ahmet;Erden, Abdulsamet;Poyrazoglu, Orhan Kursat;Karakukcu, Cigdem;Tasdemir, Arzu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3159-3161
    • /
    • 2013
  • Aim: We designed this study to investigate the neutrophil lymphocyte ratio as a biomarker in distinguishing colonic polyps which are neoplastic or non-neoplastic. Materials and Methods: One hundred and twenty-five patients with colonic polyps were enrolled into the study. The following data were obtained from a computerized patient registry database: mean platelet volume (MPV), uric acid (UA), platelet count (PC), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT) and the neutrophil to lymphocyte ratio (NLR). Exclusion criteria were active infectious disease, hematological disorders, and malignancies. Colonic polyps divided into two groups as neoplastic polyps (tubular adenoma, villous adenoma, tubulovillous adenoma) and non-neoplastic polyps (hyperplastic polyps, inflammatory pseudopolyps etc). The relationship between colonic polyp type and NLR was evaluated with statistical analysis. Results: There were 67 patients (53.6%) with neoplastic and 58 (46.4%) patients with non-neoplastic polyps. Mean NLRs of neoplastic and non-neoplastic groups were respectively $3.32{\pm}2.54$ and $2.98{\pm}3.16$ (P<0.05). Conclusion: Although sensitivity and specificity are not high, NLR may be used as a biomarker of neoplastic condition of colonic polyps.

Prediction of Lung Cancer Based on Serum Biomarkers by Gene Expression Programming Methods

  • Yu, Zhuang;Chen, Xiao-Zheng;Cui, Lian-Hua;Si, Hong-Zong;Lu, Hai-Jiao;Liu, Shi-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9367-9373
    • /
    • 2014
  • In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are requentlyused lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.

Serum miR-19a Predicts Resistance to FOLFOX Chemotherapy in Advanced Colorectal Cancer Cases

  • Chen, Qi;Xia, Hong-Wei;Ge, Xiao-Jun;Zhang, Yu-Chen;Tang, Qiu-Lin;Bi, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7421-7426
    • /
    • 2013
  • Background: Colorectal cancer is the fourth most common cancer worldwide and the second leading cause of cancer-related death. FOLFOX is the most common regimen used in the first-line chemotherapy in advanced colorectal cancer, but only half of the patients respond to this regimen and we have almost no clue in predicting resistance in such first-line application. Methods: To explore the potential molecular biomarkers predicting the resistance of FOLFOX regimen as the first-line treatment in advanced colorectal cancer, we screened microRNAs in serum samples from drug-responsive and drug-resistant patients by microarrays. Then differential microRNA expression was further validated in an independent population by reverse transcription and quantitative real-time PCR. Results: 62 microRNAs expressing differentially with fold-change >2 were screened out by microarray analysis. Among them, 5 (miR-221, miR-222, miR-122, miR-19a, miR-144) were chosen for further validation in an independent population (N=72). Our results indicated serum miR-19a to be significantly up-regulated in resistance-phase serum (p=0.009). The ROC curve analysis showed that the sensitivity of serum miR-19a to discriminate the resistant patients from the response ones was 66.7%, and the specificity was 63.9% when the AUC was 0.679. We additionally observed serum miR-19a had a complementary value for cancer embryonic antigen (CEA). Stratified analysis further revealed that serum miR-19a predicted both intrinsic and acquired drug resistance. Conclusions: Our findings confirmed aberrant expression of serum miR-19a in FOLFOX chemotherapy resistance patients, suggesting serum miR-19a could be a potential molecular biomarker for predicting and monitoring resistance to first-line FOLFOX chemotherapy regimens in advanced colorectal cancer patients.

Immunosignature: Serum Antibody Profiling for Cancer Diagnostics

  • Chapoval, Andrei I;Legutki, J Bart;Stafford, Philip;Trebukhov, Andrey V;Johnston, Stephen A;Shoikhet, Yakov N;Lazarev, Alexander F
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4833-4837
    • /
    • 2015
  • Biomarkers for preclinical diagnosis of cancer are valuable tools for detection of malignant tumors at early stages in groups at risk and screening healthy people, as well as monitoring disease recurrence after treatment of cancer. However the complexity of the body's response to the pathological processes makes it virtually impossible to evaluate this response to the development of the disease using a single biomarker that is present in the serum at low concentrations. An alternative approach to standard biomarker analysis is called immunosignature. Instead of going after biomarkers themselves this approach rely on the analysis of the humoral immune response to molecular changes associated with the development of pathological processes. It is known that antibodies are produced in response to proteins expressed during cancer development. Accordingly, the changes in antibody repertoire associated with tumor growth can serve as biomarkers of cancer. Immunosignature is a highly sensitive method for antibody repertoire analysis utilizing high density peptide microarrays. In the present review we discuss modern methods for antibody detection, as well as describe the principles and applications of immunosignature in research and clinical practice.

Cell-Free miR-27a, a Potential Diagnostic and Prognostic Biomarker for Gastric Cancer

  • Park, Jong-Lyul;Kim, Mirang;Song, Kyu-Sang;Kim, Seon-Young;Kim, Yong Sung
    • Genomics & Informatics
    • /
    • 제13권3호
    • /
    • pp.70-75
    • /
    • 2015
  • MicroRNAs (miRNAs) have been demonstrated to play an important role in carcinogenesis. Previous studies revealed that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. In this study, we measured the plasma expression levels of three miRNAs (miR-21, miR-27a, and miR-155) to investigate the usefulness of miRNAs for gastric cancer detection. We initially examined plasma miRNA expression levels in a screening cohort consisting of 15 patients with gastric cancer and 15 healthy controls from Korean population, using TaqMan quantitative real-time polymerase chain reaction. We observed that the expression level of miR-27a was significantly higher in patients with gastric cancer than in healthy controls, whereas the miR-21 and miR-155a expression levels were not significantly higher in the patients with gastric cancer. Therefore, we further validated the miR-27a expression level in 73 paired gastric cancer tissues and in a validation plasma cohort from 35 patients with gastric cancer and 35 healthy controls. In both the gastric cancer tissues and the validation plasma cohort, the miR-27a expression levels were significantly higher in patients with gastric cancer. Receiver-operator characteristic (ROC) analysis of the validation cohort, revealed an area under the ROC curve value of 0.70 with 75% sensitivity and 56% specificity in discriminating gastric cancer. Thus, the miR-27a expression level in plasma could be a useful biomarker for the diagnosis and/or prognosis of gastric cancer.

Promoter Methylation of MGMT Gene in Serum of Patients with Esophageal Squamous Cell Carcinoma in North East India

  • Das, Mandakini;Sharma, Santanu Kumar;Sekhon, Gaganpreet Singh;Saikia, Bhaskar Jyoti;Mahanta, Jagadish;Phukan, Rup Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9955-9960
    • /
    • 2014
  • Background: Promoter hypermethylation is a common event in human cancer. O6-methylguanine-DNA methyltransferase (MGMT) is a gene involved in DNA repair, which is methylated in a variety of cancers. We aimed to explore the methylation status of MGMT gene among the North Eastern population where esophageal cancer incidence and exposure to carcinogens like nitrosamines is high. Materials and Methods: A total of 100 newly diagnosed esophageal cancer cases along with equal number of age, sex and ethnicity matched controls were included in this study. Methylation specific PCR was used to determine the MGMT methylation status in serum samples. Results: Aberrant promoter methylation of the MGMT gene was detected in 70% of esophageal cancer cases. Hypermethylation of MGMT gene was found to be influenced by environmental factors like betel quid and tobacco which contain potent carcinogens like nitrosamines. Tobacco chewing and tobacco smoking habit synergistically with MGMT methylation elevated the risk for esophageal cancer development [adjusted OR=5.02, 95% CI=1.35-18.74; p=0.010 for tobacco chewing and Adjusted OR=3.00, 95% CI=1.22-7.36; p=0.014 for tobacco smoking]. Conclusions: Results suggest that the DNA hypermethylation of MGMT is an important mechanism for MGMT gene silencing resulting in esophageal cancer development and is influenced by the environmental factors. Thus MGMT hypermethylation can be used as a biomarker for esophageal cancer in high incidence region of North East India.

EA-D p45-IgG as a Potential Biomarker for Nasopharyngeal Carcinoma Diagnosis

  • Chen, Hao;Luo, Yao-Ling;Zhang, Lin;Tian, Li-Zhen;Feng, Zhi-Ting;Liu, Wan-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7433-7438
    • /
    • 2013
  • Aim: To identify new biomarkers for NPC diagnosis with an anti-EBV Western blot test kit. Methods: Serum samples from 64 NPC patients and healthy subjects with four specific VCA-IgA/EA-IgA profiles were tested with an anti-EBV Western blot test kit from EUROIMMUN AG. Proteins were quantified with scores of intensity visually assigned to the protein bands. The markers which showed statistical differences between the NPC and non-NPC subjects were further evaluated in another 32 NPC patients and 32 controls in comparison with established biomarkers including VCA-IgA, EA-IgA, EBV-related protein IgG, and EBV DNA. Results: Among the markers screened, EA-D p45-IgG showed a statistically significant difference (p < 0.05) between NPC and non-NPC subjects with VCA-IgA positivy. In 32 VCA-IgA positive NPC patients and 32 control subjects, the diagnostic accuracy of EA-D p45-IgG was 78.1% with a positive predictive value of 77.8% and a negative predictive value of 78.6%. In the verification experiment, the specificity and sensitivity of EA-D p45-IgG were 75.0% and 90.6 %, respectively. Conclusions: EA-D p45-IgG might be a potential biomarker for NPC diagnosis, especially among VCA-IgA positive subjects.

Complement Receptor 1 Expression in Peripheral Blood Mononuclear Cells and the Association with Clinicopathological Features And Prognosis of Nasopharyngeal Carcinoma

  • He, Jian-Rong;Xi, Jing;Ren, Ze-Fang;Qin, Han;Zhang, Ying;Zeng, Yi-Xin;Mo, Hao-Yuan;Jia, Wei-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6527-6531
    • /
    • 2012
  • Purpose: Complement receptor 1 (CR1) is induced by Epstein-Barr virus (EBV) and may be a potential biomarker of nasopharyngeal carcinoma (NPC). We conducted the present study to evaluate the association of CR1 expression with clinicopathological features and prognosis of NPC. Methods: We enrolled 145 NPC patients and 110 controls. Expression levels of CR1 in peripheral blood mononuclear cells (PBMCs) were detected using quantitative real-time PCR and associations with clinicopathological features and prognosis were examined. Results: CR1 levels in the NPC group [3.54 (3.34, 3.79)] were slightly higher than those in the controls [3.33 (3.20, 3.47)] (P<0.001). Increased CR1 expression was associated with histology classification (type III vs. type II, P=0.002), advanced clinical stage (P=0.003), high T stage (P=0.017), and poor overall survival (HR, 4.89; 95% CI, 1.23-19.42; P=0.024). However, there were no statistically significant differences in CR1 expression among N or M stages. Conclusion: These findings indicate that CR1 expression in PBMCs may be a new biomarker for prognosis of NPC and a potential therapeutic target.