• Title/Summary/Keyword: Cancer Stem Cells (CSCs)

Search Result 44, Processing Time 0.018 seconds

Turning Hepatic Cancer Stem Cells Inside Out - A Deeper Understanding through Multiple Perspectives

  • Chan, Lok-Hei;Luk, Steve T.;Ma, Stephanie
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.202-209
    • /
    • 2015
  • Hepatocellular carcinoma (HCC), a highly malignant disease and the third leading cause of all cancer mortalities worldwide, often responses poorly to current treatments and results in dismal outcomes due to frequent chemoresistance and tumor relapse. The heterogeneity of HCC is an important attribute of the disease. It is the outcome of many factors, including the cross-talk between tumor cells within the tumor microenvironment and the acquisition and accumulation of genetic and epigenetic alterations in tumor cells. In addition, there is accumulating evidence in recent years to show that the malignancy of HCC can be attributed partly to the presence of cancer stem cell (CSC). CSCs are capable to self-renew, differentiate and initiate tumor formation. The regulation of the stem cell-like properties by several important signaling pathways have been found to endow the tumor cells with an increased level of tumorigenicity, chemoresistance, and metastatic ability. In this review, we will discuss the recent findings on hepatic CSCs, with special emphasis on their putative origins, relationship with hepatitis viruses, regulatory signaling networks, tumor microenvironment, and how these factors control the stemness of hepatic CSCs. We will also discuss some novel therapeutic strategies targeted at hepatic CSCs for combating HCC and perspectives of future investigation.

Cancer stem cell metabolism: target for cancer therapy

  • Chae, Young Chan;Kim, Jae Ho
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.319-326
    • /
    • 2018
  • Increasing evidence suggests that cancer stem cell (CSC) theory represents an important mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate cancers. In addition to their more established role in maintaining minimal residual disease after treatment and forming the new bulk of the tumor, CSCs might also critically contribute to tumor recurrence and metastasis. For this reason, specific elimination of CSCs may thus represent one of the most important treatment strategies. Emerging evidence has shown that CSCs have a different metabolic phenotype to that of differentiated bulk tumor cells, and these specific metabolic activities directly participate in the process of CSC transformation or support the biological processes that enable tumor progression. Exploring the role of CSC metabolism and the mechanism of the metabolic plasticity of CSCs has become a major focus in current cancer research. The targeting of CSC metabolism may provide new effective therapies to reduce the risk of recurrence and metastasis. In this review, we summarize the most significant discoveries regarding the metabolism of CSCs and highlight recent approaches in targeting CSC metabolism.

MTA1 Overexpression Induces Cisplatin Resistance Innasopharyngeal Carcinoma by Promoting Cancer Stem Cells Properties

  • Feng, Xiaohua;Zhang, Qianbing;Xia, Songxin;Xia, Bing;Zhang, Yue;Deng, Xubin;Su, Wenmei;Huang, Jianqing
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.699-704
    • /
    • 2014
  • Themetastasis-associated gene 1 (MTA1) oncogene hasbeen suggested to be involved in the regulation of cancer progression. However, there is still no direct evidence that MTA1 regulates cisplatin (CDDP) resistance, as well as cancer stem cell properties. In this study, we found that MTA1 was enriched in CNE1/CDDP cells. Knock down of MTA1 in CNE1/CDDP cells reversed CSCs properties and CDDP resistance. However, ectopic expression of MTA1 in CNE1 cells induced CSCs phenotypes and CDDP insensitivity. Interestingly, ectopic overexpression of MTA1-induced CSCs properties and CDDP resistance were reversed in CNE1 cells after inhibition of PI3K/Akt by LY294002. In addition, MTA1 expression and Akt activity in CNE1/CDDP cells was much higher than that in CNE1 cells. These results suggested that MTA1 may play a critical role in promoting CDDP resistance in NPC cells by regulatingcancer stem cell properties via thePI3K/Akt signaling pathway. Our findings suggested that MTA1 may be a potential target for overcoming CDDP resistance in NPC therapy.

Chemotherapeutic Drug Resistant Cancer Stem-like Cells of Glioma (다형성 교모세포종의 항생제 내성 종양 줄기세포)

  • Kang, Mi-Kyung;Kang, Soo-Kyung
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1039-1045
    • /
    • 2007
  • Glioblastoma multiforme (GBM) is the most frequently occurring brain cancer. Although the existence of cancer stem cells (CSCs) in GBM has been established, there is little evidence to explain the link between CSCs and chemoresistance. In this study, we investigated that only a few cells of A172 and established GBM2 survived after 1,3-bis(2chloroethyl)-1-nitrosourea (BiCNU) exposures and these sur-vived cells resist the subsequent BiCNU treatment. In addition, these BiCNU-resistant small pop-ulations derived from GBM cells increased the phosphorylations of Erk and Akt and highly expressed CD133 stem cell surface marker. Furthermore, we observed that the BiCNU-resistant cancer cells de-rived from GBM have grown tumors when transplanted into severe combined immuno-deficient (SCID) mouse brain. These results demonstrate that BiCNU-resistant subpopulation cells derived from GBM have cancer stem-like cell properties. Therefore, it may provide provide further evidence that CSCs in GBM have chemotherapeutic drug resistance.

Combination Therapy of Lactobacillus plantarum Supernatant and 5-Fluouracil Increases Chemosensitivity in Colorectal Cancer Cells

  • An, JaeJin;Ha, Eun-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1490-1503
    • /
    • 2016
  • Colorectal cancer (CRC) is the third most common cancer in the world. Although 5-fluorouracil (5-FU) is the representative chemotherapy drug for colorectal cancer, it has therapeutic limits due to its chemoresistant characteristics. Colorectal cancer cells can develop into cancer stem cells (CSCs) with self-renewal potential, thereby causing malignant tumors. The human gastrointestinal tract contains a complex gut microbiota that is essential for the host's homeostasis. Recently, many studies have reported correlations between gut flora and the onset, progression, and treatment of CRC. The present study confirms that the most representative symbiotic bacteria in humans, Lactobacillus plantarum (LP) supernatant (SN), selectively inhibit the characteristics of 5-FU-resistant colorectal cancer cells (HT-29 and HCT-116). LP SN inhibited the expression of the specific markers CD44, 133, 166, and ALDH1 of CSCs. The combination therapy of LP SN and 5-FU inhibited the survival of CRCs and led to cell death by inducing caspase-3 activity. The combination therapy of LP SN and 5-FU induced an anticancer mechanism by inactivating the Wnt/β-catenin signaling of chemoresistant CRC cells, and reducing the formation and size of colonospheres. In conclusion, our results show that LP SN can enhance the therapeutic effect of 5-FU for colon cancer, and reduce colorectal cancer stem-like cells by reversing the development of resistance to anticancer drugs. This implies that probiotic substances may be useful therapeutic alternatives as biotherapeutics for chemoresistant CRC.

Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays

  • Salim, Elsayed I;Hegazi, Mona M;Kang, Jin Seok;Helmy, Hager M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1023-1035
    • /
    • 2016
  • The purpose of this study was to investigate the role of colon cancer stem cells (CSCs) during chemically-induced rat multi-step colon carcinogenesis with or without the treatment with a specific cyclooxygenase-2 inhibitor drug (celecoxib). Two experiments were performed, the first, a short term 12 week colon carcinogenesis bioassay in which only surrogate markers for colon cancer, aberrant crypt foci (ACF) lesions, were formed. The other experiment was a medium term colon cancer rat assay in which tumors had developed after 32 weeks. Treatment with celecoxib lowered the numbers of ACF, as well as the tumor volumes and multiplicities after 32 weeks. Immunohistochemical proliferating cell nuclear antigen (PCNA) labeling indexes LI (%) were downregulated after treatment by celecoxib. Also different cell surface antigens known to associate with CSCs such as the epithelial cell adhesion molecule (EpCAM), CD44 and CD133 were compared between the two experiments and showed differential expression patterns depending on the stage of carcinogenesis and treatment with celecoxib. Flow cytometric analysis demonstrated that the numbers of CD133 cells were increased in the colonic epithelium after 12 weeks while those of CD44 but not CD133 cells were increased after 32 weeks. Moreover, aldehyde dehydrogenase-1 activity levels in the colonic epithelium (a known CSC marker) detected by ELISA assay were found down-regulated after 12 weeks, but were up-regulated after 32 weeks. The data have also shown that the protective effect of celecoxib on these specific markers and populations of CSCs and on other molecular processes such as apoptosis targeted by this drug may vary depending on the genetic and phenotypic stages of carcinogenesis. Therefore, uncovering these distinction roles of CSCs during different phases of carcinogenesis and during specific treatment could be useful for targeted therapy.

LY294002 Induces G0/G1 Cell Cycle Arrest and Apoptosis of Cancer Stem-like Cells from Human Osteosarcoma Via Down-regulation of PI3K Activity

  • Gong, Chen;Liao, Hui;Wang, Jiang;Lin, Yang;Qi, Jun;Qin, Liang;Tian, Lin-Qiang;Guo, Feng-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3103-3107
    • /
    • 2012
  • Osteosarcoma, the most common primary mesenchymal malignant tumor, usually has bad prognosis in man, with cancer stem-like cells (CSCs) considered to play a critical role in tumorigenesis and drug-resistance. It is known that phosphatidylinositol 3-kinase (PI3K) is involved in regulation of tumor cell fates, such as proliferation, cell cycling, survival and apoptosis. Whether and how PI3K and inhibitors might cooperate in human osteosarcoma CSCs is still unknown. We therefore evaluated the effects of LY294002, a PI3K inhibitor, on the cell cycle and apoptosis of osteosarcoma CSCs in vitro. LY294002 prevented phosphorylation of protein kinase B (PKB/Akt) by inhibition of PI3K phosphorylation activity, thereby inducing G0/G1 cell cycle arrest and apoptosis in osteosarcoma CSCs. Further studies also demonstrated that apoptosis induction by LY294002 is accompanied by activation of caspase-9, caspase-3 and PARP, which are involved in the mitochondrial apoptosis pathway. Therefore, our results indicate PI3K inhibitors may represent a potential strategy for managing human osteosarcoma via affecting CSCs.

β-carotene regulates cancer stemness in colon cancer in vivo and in vitro

  • Lee, Kyung Eun;Kwon, Minseo;Kim, Yoo Sun;Kim, Yerin;Chung, Min Gi;Heo, Seung Chul;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.16 no.2
    • /
    • pp.161-172
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Colorectal cancer (CRC) is the third most common cancer worldwide and has a high recurrence rate, which is associated with cancer stem cells (CSCs). β-carotene (BC) possesses antioxidant activity and several anticancer mechanisms. However, no investigation has examined its effect on colon cancer stemness. MATERIALS/METHODS: CD133+CD44+ HCT116 and CD133+CD44+ HT-29 cells were isolated and analyzed their self-renewal capacity by clonogenic and sphere formation assays. Expressions of several CSCs markers and Wnt/β-catenin signaling were examined. In addition, CD133+CD44+ HCT116 cells were subcutaneously injected in xenograft mice and analyzed the effect of BC on tumor formation, tumor volume, and CSCs markers in tumors. RESULTS: BC inhibited self-renewal capacity and CSC markers, including CD44, CD133, ALDH1A1, NOTCH1, Sox2, and β-catenin in vitro. The effects of BC on CSC markers were confirmed in primary cells isolated from human CRC tumors. BC supplementation decreased the number and size of tumors and delayed the tumor-onset time in xenograft mice injected with CD133+CD44+ HCT116 cells. The inhibitory effect of BC on CSC markers and the Wnt/β-catenin signaling pathway in tumors was confirmed in vivo as well. CONCLUSIONS: These results suggest that BC may be a potential therapeutic agent for colon cancer by targeting colon CSCs.

G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells

  • Choi, Hye Yeon;Saha, Subbroto Kumar;Kim, Kyeongseok;Kim, Sangsu;Yang, Gwang-Mo;Kim, BongWoo;Kim, Jin-Hoi;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.68-80
    • /
    • 2015
  • G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of self-renewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

Sox12 Is a Cancer Stem-Like Cell Marker in Hepatocellular Carcinoma

  • Zou, Song;Wang, Chen;Liu, Jiansheng;Wang, Qun;Zhang, Dongdong;Zhu, Shengnan;Xu, Shengyuan;Kang, Mafei;He, Shaozhong
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.847-854
    • /
    • 2017
  • Recent studies on molecular carcinogenesis suggest that the chemo-resistance of some cancers is largely due to presence of cancer stem cells (CSCs), which affect the chemotherapy outcome for hepatocellular carcinoma (HCC). However, currently no consensus on a CSC phenotype in HCC has been obtained. Here, we examined Sox12 as a novel CSC marker in HCC. Sox12+ versus Sox12- cells were purified from HCC cell lines. The Sox12+ cells were compared with Sox12- HCC cells for tumor sphere formation, chemo-resistance, tumor formation after serial adoptive transplantations in nude mice, and the frequency of developing distal metastasis. We found that compared to Sox12- HCC cells, Sox12+ HCC cells generated significantly more tumor spheres in culture, were more chemo-resistant to cisplatin, were detected in circulation more frequently, and formed distal tumor more frequently. Moreover, Sox12 appeared to functionally contribute to the stemness of HCC cells. Thus, we conclude that Sox12 may be a novel marker for enriching CSCs in HCC.