DOI QR코드

DOI QR Code

Cancer stem cell metabolism: target for cancer therapy

  • Chae, Young Chan (School of Life Science, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Jae Ho (Department of Physiology, School of Medicine, Pusan National University)
  • Received : 2018.04.03
  • Published : 2018.07.31

Abstract

Increasing evidence suggests that cancer stem cell (CSC) theory represents an important mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate cancers. In addition to their more established role in maintaining minimal residual disease after treatment and forming the new bulk of the tumor, CSCs might also critically contribute to tumor recurrence and metastasis. For this reason, specific elimination of CSCs may thus represent one of the most important treatment strategies. Emerging evidence has shown that CSCs have a different metabolic phenotype to that of differentiated bulk tumor cells, and these specific metabolic activities directly participate in the process of CSC transformation or support the biological processes that enable tumor progression. Exploring the role of CSC metabolism and the mechanism of the metabolic plasticity of CSCs has become a major focus in current cancer research. The targeting of CSC metabolism may provide new effective therapies to reduce the risk of recurrence and metastasis. In this review, we summarize the most significant discoveries regarding the metabolism of CSCs and highlight recent approaches in targeting CSC metabolism.

Keywords

References

  1. Pavlova NN and Thompson CB (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23, 27-47 https://doi.org/10.1016/j.cmet.2015.12.006
  2. Kreso A and Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14, 275-291 https://doi.org/10.1016/j.stem.2014.02.006
  3. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17, 313-319 https://doi.org/10.1038/nm.2304
  4. Facucho-Oliveira JM and St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5, 140-158 https://doi.org/10.1007/s12015-009-9058-0
  5. Mohyeldin A, Garzon-Muvdi T and Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150-161 https://doi.org/10.1016/j.stem.2010.07.007
  6. Zou ZW, Ma C, Medoro L et al (2016) LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing sidepopulation stem-like cancer cells. Oncotarget 7, 61741-61754
  7. Cairns RA, Harris IS and Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85-95 https://doi.org/10.1038/nrc2981
  8. Kroemer G and Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482 https://doi.org/10.1016/j.ccr.2008.05.005
  9. Dang CV (2012) Links between metabolism and cancer. Genes Dev 26, 877-890 https://doi.org/10.1101/gad.189365.112
  10. Cantor JR and Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2, 881-898 https://doi.org/10.1158/2159-8290.CD-12-0345
  11. Eales KL, Hollinshead KE and Tennant DA (2016) Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 5, e190 https://doi.org/10.1038/oncsis.2015.50
  12. Majewski N, Nogueira V, Bhaskar P et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16, 819-830 https://doi.org/10.1016/j.molcel.2004.11.014
  13. Lu C and Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16, 9-17 https://doi.org/10.1016/j.cmet.2012.06.001
  14. Dang L, White DW, Gross S et al (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966
  15. Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474-478 https://doi.org/10.1038/nature10860
  16. Hirschhaeuser F, Sattler UG and Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71, 6921-6925 https://doi.org/10.1158/0008-5472.CAN-11-1457
  17. Pattabiraman DR and Weinberg RA (2014) Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13, 497-512 https://doi.org/10.1038/nrd4253
  18. Nguyen LV, Vanner R, Dirks P and Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12, 133-143 https://doi.org/10.1038/nrc3184
  19. Cheung TH and Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14, 329-340 https://doi.org/10.1038/nrm3591
  20. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648 https://doi.org/10.1038/367645a0
  21. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983-3988 https://doi.org/10.1073/pnas.0530291100
  22. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555-567 https://doi.org/10.1016/j.stem.2007.08.014
  23. Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100, 15178-15183 https://doi.org/10.1073/pnas.2036535100
  24. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63, 5821-5828
  25. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancerinitiating cells. Nature 445, 111-115 https://doi.org/10.1038/nature05384
  26. Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65, 10946-10951 https://doi.org/10.1158/0008-5472.CAN-05-2018
  27. Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15, 504-514 https://doi.org/10.1038/sj.cdd.4402283
  28. Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451, 345-349 https://doi.org/10.1038/nature06489
  29. Merlos-Suarez A, Barriga FM, Jung P et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511-524 https://doi.org/10.1016/j.stem.2011.02.020
  30. Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313-323 https://doi.org/10.1016/j.stem.2007.06.002
  31. Ito K and Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15, 243-256 https://doi.org/10.1038/nrm3772
  32. Muz B, de la Puente P, Azab F and Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis and resistance to therapy. Hypoxia (Auckl) 3, 83-92
  33. Kleffel S and Schatton T (2013) Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol 734, 145-179
  34. Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750-764 https://doi.org/10.1016/j.cell.2013.10.029
  35. Folmes CD, Dzeja PP, Nelson TJ and Terzic A (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596-606 https://doi.org/10.1016/j.stem.2012.10.002
  36. Panopoulos AD, Yanes O, Ruiz S et al (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22, 168-177 https://doi.org/10.1038/cr.2011.177
  37. Liu PP, Liao J, Tang ZJ et al (2014) Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ 21, 124-135 https://doi.org/10.1038/cdd.2013.131
  38. Zhou Y, Zhou Y, Shingu T et al (2011) Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem 286, 32843-32853 https://doi.org/10.1074/jbc.M111.260935
  39. Ciavardelli D, Rossi C, Barcaroli D et al (2014) Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis 5, e1336 https://doi.org/10.1038/cddis.2014.285
  40. Liao J, Qian F, Tchabo N et al (2014) Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One 9, e84941 https://doi.org/10.1371/journal.pone.0084941
  41. Emmink BL, Verheem A, Van Houdt WJ et al (2013) The secretome of colon cancer stem cells contains drugmetabolizing enzymes. J Proteomics 91, 84-96 https://doi.org/10.1016/j.jprot.2013.06.027
  42. Tamada M, Nagano O, Tateyama S et al (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72, 1438-1448 https://doi.org/10.1158/0008-5472.CAN-11-3024
  43. Janiszewska M, Suva ML, Riggi N et al (2012) Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev 26, 1926-1944 https://doi.org/10.1101/gad.188292.112
  44. Lagadinou ED, Sach A, Callahan K et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329-341 https://doi.org/10.1016/j.stem.2012.12.013
  45. Sancho P, Burgos-Ramos E, Tavera A et al (2015) MYC/PGC-1alpha Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Cell Metab 22, 590-605 https://doi.org/10.1016/j.cmet.2015.08.015
  46. Viale A, Pettazzoni P, Lyssiotis CA et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628-632 https://doi.org/10.1038/nature13611
  47. Tan Z, Luo X, Xiao L et al (2016) The Role of PGC1alpha in Cancer Metabolism and its Therapeutic Implications. Mol Cancer Ther 15, 774-782 https://doi.org/10.1158/1535-7163.MCT-15-0621
  48. LeBleu VS, O'Connell JT, Gonzalez Herrera KN et al (2014) PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16, 992-1003, 1-15 https://doi.org/10.1038/ncb3039
  49. Peiris-Pages M, Martinez-Outschoorn UE, Pestell RG, Sotgia F and Lisanti MP (2016) Cancer stem cell metabolism. Breast Cancer Res 18, 55 https://doi.org/10.1186/s13058-016-0712-6
  50. Chen CL, Uthaya Kumar DB, Punj V et al (2016) NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism. Cell Metab 23, 206-219 https://doi.org/10.1016/j.cmet.2015.12.004
  51. Vazquez F, Lim JH, Chim H et al (2013) PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287-301 https://doi.org/10.1016/j.ccr.2012.11.020
  52. Yajima T, Ochiai H, Uchiyama T, Takano N, Shibahara T and Azuma T (2009) Resistance to cytotoxic chemotherapyinduced apoptosis in side population cells of human oral squamous cell carcinoma cell line Ho-1-N-1. Int J Oncol 35, 273-280
  53. Zhang G, Frederick DT, Wu L et al (2016) Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 126, 1834-1856 https://doi.org/10.1172/JCI82661
  54. Lee KM, Giltnane JM, Balko JM et al (20170 MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab 26, 633-647 e7 https://doi.org/10.1016/j.cmet.2017.09.009
  55. Tan AS, Baty JW, Dong LF et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21, 81-94 https://doi.org/10.1016/j.cmet.2014.12.003
  56. Cluntun AA, Lukey MJ, Cerione RA and Locasale JW (2017) Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends Cancer 3, 169-180 https://doi.org/10.1016/j.trecan.2017.01.005
  57. Oburoglu L, Tardito S, Fritz V et al (2014) Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15, 169-184 https://doi.org/10.1016/j.stem.2014.06.002
  58. Kim JH, Lee KJ, Seo Y et al (2018) Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep 8, 409 https://doi.org/10.1038/s41598-017-18762-4
  59. Mancini R, Noto A, Pisanu ME, De Vitis C, Maugeri-Sacca M and Ciliberto G (2018) Metabolic features of cancer stem cells: the emerging role of lipid metabolism. Oncogene 37, 2367-2378 https://doi.org/10.1038/s41388-018-0141-3
  60. Gupta VK and Banerjee S (2017) Isolation of Lipid Raft Proteins from CD133+ Cancer Stem Cells. Methods Mol Biol 1609, 25-31
  61. Babina IS, McSherry EA, Donatello S, Hill AD and Hopkins AM (2014) A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res 16, R19 https://doi.org/10.1186/bcr3614
  62. Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M and Sato C (2011) Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem 286, 1999-2007 https://doi.org/10.1074/jbc.M110.184010
  63. Tirinato L, Liberale C, Di Franco S et al (2015) Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33, 35-44 https://doi.org/10.1002/stem.1837
  64. Luo X, Cheng C, Tan Z et al (2017) Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer 16, 76
  65. Li J, Condello S, Thomes-Pepin J et al (2017) Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells. Cell Stem Cell 20, 303-314 e5 https://doi.org/10.1016/j.stem.2016.11.004
  66. Wang T, Fahrmann JF, Lee H et al (2018) JAK/STAT3-Regulated Fatty Acid beta-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab 27, 136-150 e5 https://doi.org/10.1016/j.cmet.2017.11.001
  67. Ito K, Carracedo A, Weiss D et al (2012) A PML-PPARdelta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18, 1350-1358 https://doi.org/10.1038/nm.2882
  68. Pascual G, Avgustinova A, Mejetta S et al (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41-45 https://doi.org/10.1038/nature20791
  69. Vlashi E, Lagadec C, Vergnes L et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A 108, 16062-16067 https://doi.org/10.1073/pnas.1106704108
  70. Dong C, Yuan T, Wu Y et al (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316-331 https://doi.org/10.1016/j.ccr.2013.01.022
  71. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10, 671-684 https://doi.org/10.1038/nrd3504
  72. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33, 207-214 https://doi.org/10.1016/j.tips.2012.01.005
  73. Kim JW, Tchernyshyov I, Semenza GL and Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177-185 https://doi.org/10.1016/j.cmet.2006.02.002
  74. Dupuy F, Tabaries S, Andrzejewski S et al (2015) PDK1-Dependent Metabolic Reprogramming Dictates Metastatic Potential in Breast Cancer. Cell Metab 22, 577-589 https://doi.org/10.1016/j.cmet.2015.08.007
  75. Peng F, Wang JH, Fan WJ et al (2018) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37, 1062-1074 https://doi.org/10.1038/onc.2017.368
  76. Xia P and Xu XY (2015) PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res 5, 1602-1609
  77. Hirsch HA, Iliopoulos D, Tsichlis PN and Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69, 7507-7511 https://doi.org/10.1158/0008-5472.CAN-09-2994
  78. Lamb R, Ozsvari B, Lisanti CL et al (2015) Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget 6, 4569-4584 https://doi.org/10.18632/oncotarget.3174
  79. Chae YC, Caino MC, Lisanti S et al (2012) Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 22, 331-344 https://doi.org/10.1016/j.ccr.2012.07.015
  80. Chae YC, Angelin A, Lisanti S et al (2013) Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun 4, 2139 https://doi.org/10.1038/ncomms3139