References
- Pavlova NN and Thompson CB (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23, 27-47 https://doi.org/10.1016/j.cmet.2015.12.006
- Kreso A and Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14, 275-291 https://doi.org/10.1016/j.stem.2014.02.006
- Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17, 313-319 https://doi.org/10.1038/nm.2304
- Facucho-Oliveira JM and St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5, 140-158 https://doi.org/10.1007/s12015-009-9058-0
- Mohyeldin A, Garzon-Muvdi T and Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150-161 https://doi.org/10.1016/j.stem.2010.07.007
- Zou ZW, Ma C, Medoro L et al (2016) LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing sidepopulation stem-like cancer cells. Oncotarget 7, 61741-61754
- Cairns RA, Harris IS and Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85-95 https://doi.org/10.1038/nrc2981
- Kroemer G and Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482 https://doi.org/10.1016/j.ccr.2008.05.005
- Dang CV (2012) Links between metabolism and cancer. Genes Dev 26, 877-890 https://doi.org/10.1101/gad.189365.112
- Cantor JR and Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2, 881-898 https://doi.org/10.1158/2159-8290.CD-12-0345
- Eales KL, Hollinshead KE and Tennant DA (2016) Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 5, e190 https://doi.org/10.1038/oncsis.2015.50
- Majewski N, Nogueira V, Bhaskar P et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16, 819-830 https://doi.org/10.1016/j.molcel.2004.11.014
- Lu C and Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16, 9-17 https://doi.org/10.1016/j.cmet.2012.06.001
- Dang L, White DW, Gross S et al (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966
- Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474-478 https://doi.org/10.1038/nature10860
- Hirschhaeuser F, Sattler UG and Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71, 6921-6925 https://doi.org/10.1158/0008-5472.CAN-11-1457
- Pattabiraman DR and Weinberg RA (2014) Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13, 497-512 https://doi.org/10.1038/nrd4253
- Nguyen LV, Vanner R, Dirks P and Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12, 133-143 https://doi.org/10.1038/nrc3184
- Cheung TH and Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14, 329-340 https://doi.org/10.1038/nrm3591
- Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648 https://doi.org/10.1038/367645a0
- Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983-3988 https://doi.org/10.1073/pnas.0530291100
- Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555-567 https://doi.org/10.1016/j.stem.2007.08.014
- Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100, 15178-15183 https://doi.org/10.1073/pnas.2036535100
- Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63, 5821-5828
- Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancerinitiating cells. Nature 445, 111-115 https://doi.org/10.1038/nature05384
- Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65, 10946-10951 https://doi.org/10.1158/0008-5472.CAN-05-2018
- Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15, 504-514 https://doi.org/10.1038/sj.cdd.4402283
- Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451, 345-349 https://doi.org/10.1038/nature06489
- Merlos-Suarez A, Barriga FM, Jung P et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511-524 https://doi.org/10.1016/j.stem.2011.02.020
- Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313-323 https://doi.org/10.1016/j.stem.2007.06.002
- Ito K and Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15, 243-256 https://doi.org/10.1038/nrm3772
- Muz B, de la Puente P, Azab F and Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis and resistance to therapy. Hypoxia (Auckl) 3, 83-92
- Kleffel S and Schatton T (2013) Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol 734, 145-179
- Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750-764 https://doi.org/10.1016/j.cell.2013.10.029
- Folmes CD, Dzeja PP, Nelson TJ and Terzic A (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596-606 https://doi.org/10.1016/j.stem.2012.10.002
- Panopoulos AD, Yanes O, Ruiz S et al (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22, 168-177 https://doi.org/10.1038/cr.2011.177
- Liu PP, Liao J, Tang ZJ et al (2014) Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ 21, 124-135 https://doi.org/10.1038/cdd.2013.131
- Zhou Y, Zhou Y, Shingu T et al (2011) Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem 286, 32843-32853 https://doi.org/10.1074/jbc.M111.260935
- Ciavardelli D, Rossi C, Barcaroli D et al (2014) Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis 5, e1336 https://doi.org/10.1038/cddis.2014.285
- Liao J, Qian F, Tchabo N et al (2014) Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One 9, e84941 https://doi.org/10.1371/journal.pone.0084941
- Emmink BL, Verheem A, Van Houdt WJ et al (2013) The secretome of colon cancer stem cells contains drugmetabolizing enzymes. J Proteomics 91, 84-96 https://doi.org/10.1016/j.jprot.2013.06.027
- Tamada M, Nagano O, Tateyama S et al (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72, 1438-1448 https://doi.org/10.1158/0008-5472.CAN-11-3024
- Janiszewska M, Suva ML, Riggi N et al (2012) Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev 26, 1926-1944 https://doi.org/10.1101/gad.188292.112
- Lagadinou ED, Sach A, Callahan K et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329-341 https://doi.org/10.1016/j.stem.2012.12.013
- Sancho P, Burgos-Ramos E, Tavera A et al (2015) MYC/PGC-1alpha Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Cell Metab 22, 590-605 https://doi.org/10.1016/j.cmet.2015.08.015
- Viale A, Pettazzoni P, Lyssiotis CA et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628-632 https://doi.org/10.1038/nature13611
- Tan Z, Luo X, Xiao L et al (2016) The Role of PGC1alpha in Cancer Metabolism and its Therapeutic Implications. Mol Cancer Ther 15, 774-782 https://doi.org/10.1158/1535-7163.MCT-15-0621
- LeBleu VS, O'Connell JT, Gonzalez Herrera KN et al (2014) PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16, 992-1003, 1-15 https://doi.org/10.1038/ncb3039
- Peiris-Pages M, Martinez-Outschoorn UE, Pestell RG, Sotgia F and Lisanti MP (2016) Cancer stem cell metabolism. Breast Cancer Res 18, 55 https://doi.org/10.1186/s13058-016-0712-6
- Chen CL, Uthaya Kumar DB, Punj V et al (2016) NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism. Cell Metab 23, 206-219 https://doi.org/10.1016/j.cmet.2015.12.004
- Vazquez F, Lim JH, Chim H et al (2013) PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287-301 https://doi.org/10.1016/j.ccr.2012.11.020
- Yajima T, Ochiai H, Uchiyama T, Takano N, Shibahara T and Azuma T (2009) Resistance to cytotoxic chemotherapyinduced apoptosis in side population cells of human oral squamous cell carcinoma cell line Ho-1-N-1. Int J Oncol 35, 273-280
- Zhang G, Frederick DT, Wu L et al (2016) Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 126, 1834-1856 https://doi.org/10.1172/JCI82661
- Lee KM, Giltnane JM, Balko JM et al (20170 MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab 26, 633-647 e7 https://doi.org/10.1016/j.cmet.2017.09.009
- Tan AS, Baty JW, Dong LF et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21, 81-94 https://doi.org/10.1016/j.cmet.2014.12.003
- Cluntun AA, Lukey MJ, Cerione RA and Locasale JW (2017) Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends Cancer 3, 169-180 https://doi.org/10.1016/j.trecan.2017.01.005
- Oburoglu L, Tardito S, Fritz V et al (2014) Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15, 169-184 https://doi.org/10.1016/j.stem.2014.06.002
- Kim JH, Lee KJ, Seo Y et al (2018) Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep 8, 409 https://doi.org/10.1038/s41598-017-18762-4
- Mancini R, Noto A, Pisanu ME, De Vitis C, Maugeri-Sacca M and Ciliberto G (2018) Metabolic features of cancer stem cells: the emerging role of lipid metabolism. Oncogene 37, 2367-2378 https://doi.org/10.1038/s41388-018-0141-3
- Gupta VK and Banerjee S (2017) Isolation of Lipid Raft Proteins from CD133+ Cancer Stem Cells. Methods Mol Biol 1609, 25-31
- Babina IS, McSherry EA, Donatello S, Hill AD and Hopkins AM (2014) A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res 16, R19 https://doi.org/10.1186/bcr3614
- Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M and Sato C (2011) Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem 286, 1999-2007 https://doi.org/10.1074/jbc.M110.184010
- Tirinato L, Liberale C, Di Franco S et al (2015) Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33, 35-44 https://doi.org/10.1002/stem.1837
- Luo X, Cheng C, Tan Z et al (2017) Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer 16, 76
- Li J, Condello S, Thomes-Pepin J et al (2017) Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells. Cell Stem Cell 20, 303-314 e5 https://doi.org/10.1016/j.stem.2016.11.004
- Wang T, Fahrmann JF, Lee H et al (2018) JAK/STAT3-Regulated Fatty Acid beta-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab 27, 136-150 e5 https://doi.org/10.1016/j.cmet.2017.11.001
- Ito K, Carracedo A, Weiss D et al (2012) A PML-PPARdelta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18, 1350-1358 https://doi.org/10.1038/nm.2882
- Pascual G, Avgustinova A, Mejetta S et al (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41-45 https://doi.org/10.1038/nature20791
- Vlashi E, Lagadec C, Vergnes L et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A 108, 16062-16067 https://doi.org/10.1073/pnas.1106704108
- Dong C, Yuan T, Wu Y et al (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316-331 https://doi.org/10.1016/j.ccr.2013.01.022
- Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10, 671-684 https://doi.org/10.1038/nrd3504
- Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33, 207-214 https://doi.org/10.1016/j.tips.2012.01.005
- Kim JW, Tchernyshyov I, Semenza GL and Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177-185 https://doi.org/10.1016/j.cmet.2006.02.002
- Dupuy F, Tabaries S, Andrzejewski S et al (2015) PDK1-Dependent Metabolic Reprogramming Dictates Metastatic Potential in Breast Cancer. Cell Metab 22, 577-589 https://doi.org/10.1016/j.cmet.2015.08.007
- Peng F, Wang JH, Fan WJ et al (2018) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37, 1062-1074 https://doi.org/10.1038/onc.2017.368
- Xia P and Xu XY (2015) PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res 5, 1602-1609
- Hirsch HA, Iliopoulos D, Tsichlis PN and Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69, 7507-7511 https://doi.org/10.1158/0008-5472.CAN-09-2994
- Lamb R, Ozsvari B, Lisanti CL et al (2015) Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget 6, 4569-4584 https://doi.org/10.18632/oncotarget.3174
- Chae YC, Caino MC, Lisanti S et al (2012) Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 22, 331-344 https://doi.org/10.1016/j.ccr.2012.07.015
- Chae YC, Angelin A, Lisanti S et al (2013) Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun 4, 2139 https://doi.org/10.1038/ncomms3139