• Title/Summary/Keyword: Cancer Chemoprevention

Search Result 242, Processing Time 0.026 seconds

Equol Induces Mitochondria-Dependent Apoptosis in Human Gastric Cancer Cells via the Sustained Activation of ERK1/2 Pathway

  • Yang, Zhiping;Zhao, Yan;Yao, Yahong;Li, Jun;Wang, Wangshi;Wu, Xiaonan
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.742-749
    • /
    • 2016
  • The cancer chemo-preventive effects of equol have been demonstrated for a wide variety of experimental tumours. In a previous study, we found that equol inhibited proliferation and induced apoptotic death of human gastric cancer MGC-803 cells. However, the mechanisms underlying equol-mediated apoptosis have not been well understood. In the present study, the dual AO (acridine orange)/EB (ethidium bromide) fluorescent assay, the comet assay, MTS, western blotting and flow cytometric assays were performed to further investigate the pro-apoptotic effect of equol and its associated mechanisms in MGC-803 cells. The results demonstrated that equol induced an apoptotic nuclear morphology revealed by AO/EB staining, the presence of a comet tail, the cleavage of caspase-3 and PARP and the depletion of cIAP1, indicating its pro-apoptotic effect. In addition, equol-induced apoptosis involves the mitochondria-dependent cell-death pathway, evidenced by the depolarization of the mitochondrial membrane potential, the cleavage of caspase-9 and the depletion of Bcl-xL and full-length Bid. Moreover, treating MGC-803 cells with equol induced the sustained activation of extracellular signal-regulated kinase (ERK), and inhibiting ERK by U0126, a MEK/ERK pathway inhibitor, significantly attenuated the equol-induced cell apoptosis. These results suggest that equol induces mitochondria-dependent apoptosis in human gastric cancer MGC-803 cells via the sustained activation of the ERK1/2 pathway. Therefore, equol may be a novel candidate for the chemoprevention and therapy of gastric cancer.

Anti-Cancer Activity of the Flower Bud of Sophora japonica L. through Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Lee, Jin Wook;Park, Gwang Hun;Eo, Hyun Ji;Song, Hun Min;Kim, Mi Kyoung;Kwon, Min Ji;Koo, Jin Suk;Lee, Jeong Rak;Lee, Man Hyo;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.297-304
    • /
    • 2015
  • The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.

Apoptotic Activity of Methanol Extract of Tongcao in HEp-2 Human Cervical Cancer Cells

  • Choi, Eun-Sun;Jung, Ji-Youn;Lee, Hang-Eun;Cho, Sung-Dae
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.41-44
    • /
    • 2013
  • Although tongcao has been reported to have anti-oxidative, anti-inflammatory and antipyretic effects, there is no report of the chemopreventive effect of tongcao in cancer cells. In the present study, we investigated the anti-proliferative activity of methanol extract of tongcao (MET) and its molecular target in HEp-2 human cervical cancer cells using MTS assay, western blot analysis, and DAPI staining. MET significantly decreases cell viability and induces apoptotic cell death. It affects Bid protein to be truncated resulting in the release of cytochrome c from mitochondria to cytosol whereas it did not affect other Bcl-2 family members. Thus, we clearly suggest that tongcao can be a potential naturally occurring plants having chemopreventive activity in cervical cancer.

Betulinic Acid, a Naturally Occurring Triterpene found in the Bark of the White Birch Tree induces Apoptotic Cell Death in KB Cervical Cancer Cells through Specificity Protein 1 and its Downstream

  • Shin, Ji-Ae;Choi, Eun-Sun;Jung, Ji-Youn;Cho, Nam-Pyo;Cho, Sung-Doe
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.150-153
    • /
    • 2011
  • Betulinic acid (BA), a naturally occurring triterpene found in the bark of the white birch tree, has been investigated to induce apoptosis in various cancer cells and animal models. However, there is no report of the chemopreventive effect of BA in cervical cancer cells. Using KB human cervical cancer cells as a model, we currently show that BA decreases cell viability and induces apoptotic cell death. The mechanism of the BA-induced anti-growth response in KB cells is due to the down-regulation of specificity protein 1 (Sp 1) and its downstream targets, myeloid cell leukemia-1(Mcl-1) and survivin. Thus, BA acts as a novel chemopreventive agent through the regulation of Sp1 that is highly expressed in tumors.

Finasteride Increases the Expression of Hemoxygenase-1 (HO-1) and NF-E2-Related Factor-2 (Nrf2) Proteins in PC-3 Cells: Implication of Finasteride-Mediated High-Grade Prostate Tumor Occurrence

  • Yun, Do-Kyung;Lee, June;Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.49-53
    • /
    • 2013
  • A number of naturally-occurring or synthetic chemicals have been reported to exhibit prostate chemopreventive effects. Synthetic $5{\alpha}$-reductase (5-AR) inhibitors, e.g. finasteride and durasteride, gained special interests as possible prostate chemopreventive agents. Indeed, two large-scale epidemiological studies have demonstrated that finasteride or durasteride significantly reduced the incidence of prostate cancer formation in men. However, these studies have raised an unexpected concern; finasteride and durasteride increased the occurrence of aggressive prostate tumor formation. In the present study, we have observed that treatment of finasteride did not affect the growth of androgen-refractory PC-3 prostate cancer cells. Finasteride also failed to induce apoptosis or affect the expression of proto-oncogenes in PC-3 cells. Interestingly, we found that treatment of finasteride induced the expression of Nrf2 and HO-1 proteins in PC-3 cells. In particular, basal level of Nrf2 protein was higher in androgen-refractory prostate cancer cells, e.g. DU-145 and PC-3 cells, compared with androgen-responsive prostate cancer cells, e.g. LNCaP cells. Also, treatment of finasteride resulted in a selective induction of Nrf2 protein in DU-145 and PC-3 cells, but not in LNCaP cells. In view of the fact that upregulation of Nrf2-mediated phase II cytoprotective enzymes contribute to attenuating tumor promotion in normal cells, but, on the other hand, confers a selective advantage for cancer cells to proliferate and survive against chemical carcinogenesis and other forms of toxicity, we propose that finasteride-mediated induction of Nrf2 protein might be responsible, at least in part, for an increased risk of high-grade prostate tumor formation in men.

Inhibition of Wnt/${\beta}$-Catenin Pathway by Dictyota dichotoma Extract (참그물 바탕말 추출물에 의한 Wnt/${\beta}$-Catenin 신호전달체계 저해)

  • Cho, Munju;Oh, Sangtaek
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.305-310
    • /
    • 2006
  • Abnormal activation of the Wnt/${\beta}$-catenin pathway and subsequent up-regulation of ${\beta}$-catenin response transcription (CRT) are associated with the development of colon cancer. Thus, the Wnt/${\beta}$-catenin pathway is an attractive target for chemoprevention and treatment of this cancer. In this study, we used a cell-based screen to identify a methanol extract of Dictyota dichotoma (EDD) that suppresses the Wnt/${\beta}$-catenin pathway without altering the level of ${\beta}$-catenin protein and reduces the expression of cyclin D1, which is a known ${\beta}$-catenin/T cell factor (TCF)-dependent gene. EDD inhibited the growth of various colon cancer cells. Our findings suggest that EDD can potentially be used as a chemopreventive agent against colon cancer.

  • PDF

Effects of Citrus Reticulata on the Cell Detachment and Apoptosis in Human Gastric Cancer SNU-668 Cells

  • Kim, Jeung-Beum;Kim, Min-Su;Kim, Ee-Hwa;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.212-217
    • /
    • 2005
  • The purpose of this study was to examine the effects of Citrus Reticulata(CR) on the Cell Detachment and Apoptosis in Human Gastric Cancer SNU-668 Cells. The effect of CR on apoptosis was investigated through MTT assay, DAPI staining, and TUNEL assay. We also performed RT-PCR for apoptotic genes including BCL-2, BAX, and caspase-3, the caspase-3 activity assay, and western blotting for pro-CASP-3. Then, to detect that adhesion of cell to ECM was reduced by CR, we investigated mRNA expression of CDH1 and PTK2 using RT-PCR, and their protein expressions using western blotting, and immunocytochemistry in SNU-668 cells. In this study, the results showed that treatment of CR induced time and dose-dependent cell death in SNU-668 cells. Downregulated mRNA expression of BCL-2, and upregulated mRNA expressions of BAX and CASP-3 indicated that the cell death was due to apoptosis. Protein expression of inactivated CASP-3, and caspase-3 activity assay also showed that apoptosis was induced in CR-treated cells.

Chemopreventive Effects of Korean Red Ginseng (Panax ginseng Meyer) on Exposure to Polycyclic Aromatic Hydrocarbons

  • Lee, Ho-Sun;Park, Jong-Yun;Yang, Mi-Hi
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.339-343
    • /
    • 2011
  • Polycyclic aromatic hydrocarbons (PAHs) are well known environmental carcinogens. PAH metabolites, especially BaP-7,8- dihydrodiol, 9,10 epoxide, initiate carcinogenesis via high specificity binding to DNA to form DNA adducts. The Korean red ginseng (KRG) from Panax ginseng has been suggested to protect against damages due to PAH exposure but the mechanism is unknown. Therefore, we investigated effects of KRG on PAH exposure using toxicokinetic methods and changes of PAH-induced oxidative damage during a 2 week-clinical trial (n=21 healthy young female, $23.71{\pm}2.43$ years). To analyze antioxidative effects of KRG, we measured changes in the levels of urinary malondialdehyde (MDA) before and after KRG treatment. We observed a significant positive association between levels of urinary MDA and 1-hydroxypyrene, a biomarker of PAH exposures (slope=1.47, p=0.03) and confirmed oxidative stress induced by PAH exposures. A reverse significant correlation between KRG treatment and level of urinary MDA was observed (p=0.03). In summary, results of our clinical trial study suggest that KRG plays a significant role in antioxidative as well as toxicokinetic pathways against PAHs exposure.

Nitric oxide and $ProstaglandinE_2$ Synthesis Inhibitory Activities of Flavonoids from the Barks of Ulmus macrocarpa

  • Kim, Hyun-Jung;Yeom, Seung-Hwan;Kim, Min-Kee;Shim, Jae-Geul;Lim, Hyun-Woo;Lee, Min-Won
    • Natural Product Sciences
    • /
    • v.10 no.6
    • /
    • pp.344-346
    • /
    • 2004
  • Eight phenolic compounds (1-8) which were isolated from the barks of Ulmus macrocarpa were evaluated for their inhibitory activities on nitric oxide (NO) and prostagrandin $E_2$ (COX-2) production in $interferon-{\gamma}\;(INF-{\gamma})$ and lipopolysaccharide (LPS)-activated RAW 264.7 cells in vitro. NO and COX-2 levels were moderately reduced by the addition of compounds (1-8). Among them 3,4,5,6,7 and 8 inhibited NO production in a dose dependent manner with an $IC_{50}$ of 92.2, 97.3, 36.1, 43.5, 32.8, 39.4 and 37.1 ${\mu}g/ml$, respectively (positive control, L-NMMA; 36.4 ${\mu}g/ml$), and 3,4,5,6,7 and 8 reduced the COX-2 level in a dose dependent manner with an $IC_{50}$ of 43.2, 24.8, 24.8, 33.4, 44.8 and 22.7 ${\mu}g/ml$, respectively (positive control, indomethacin; 23.4 ${\mu}g/ml$). These results suggest that the phenolic compounds may be developed as potential anti-inflammatory and cancer chemopreventive agents.

The Effects of Glehnia littoralis on the Inflammatory mediators in Mouse Macrophage Cells

  • Yoon, Tae-Sook;Cheon, Myeong-Sook;Lee, A-Yeong;Choi, Go-Ya;Kim, Seung-Ju;Moon, Byeong-Cheol;Kim, Ho-Kyoung
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.3
    • /
    • pp.57-63
    • /
    • 2008
  • Glehnia littoralis (Umbelliferae) is the medicinal plant used traditionally for treatment of immune-related diseases. Prostaglandins and nitric oxide (NO) have been implicated as important mediators in the processes of inflammation and carcinogenesis. For understanding the mechanisms for pharmacological activities of Glehnia littoralis, we evaluated the inhibitory activity of Glehnia littoralis on lipopolysaccharide (LPS)-induced prostaglandin $E_2$ ($PGE_2$) and NO production in mouse macrophage RAW264.7 cells. The results showed that the extract of Glehnia littoralis inhibited LPS- induced $PGE_2$ production effectively, but not NO. Additional study revealed that the extract of Glehnia littoralis suppressed cyclooxygenase-2 (COX-2) expression in a dose-dependent manner. Present study suggests that Glehnia littoralis may have anti-inflammatory and/or cancer chemopreventive activity through the inhibition of $PGE_2$ production by the suppression of COX-2 activity.

  • PDF