• Title/Summary/Keyword: Cancer Cell Inhibition

Search Result 1,465, Processing Time 0.027 seconds

Inhibitory Effect of Celeriac Extract on Cancer Cell Proliferation (셀러리악 추출물의 암세포 증식 억제 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.179-183
    • /
    • 2021
  • This study was carried out examine the effect of Celeriac Extract, which contains various anticancer ingredients, on the proliferation inhibition of human-derived cancer cells and the degree of inhibition. The five cell lines used in the experiment were lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, breast cancer cells MCF-7, and liver cancer cells SNU-182. All cancer cells derived from the human body were used, and the inhibition of cancer cell proliferation with Celeriac Extract 10ug/mL, 100ug/mL, and 1000ug/mL was measured using the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Celeriac Extract 1000ug/mL showed significant proliferation inhibition in lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, and liver cancer cells SNU-182, and showed a concentration dependence. However, only a concentration-dependent decrease was observed in breast cancer cells MCF-7.In conclusion, it can be seen that the cell proliferation inhibition mechanisms of Celeriac Extract using various human-derived cancer cell lines provide the potential for cancer prevention and therapeutic development.

Effect of Broccoli Extract on Inhibition of Cancer Cell Proliferation (브로콜리 추출물의 암세포 증식 억제에 미치는 효과)

  • Jeong-Sook Park
    • Journal of Digital Policy
    • /
    • v.2 no.1
    • /
    • pp.31-35
    • /
    • 2023
  • This study was conducted to examine the effect of Broccoli Extract on the proliferation inhibition of human-derived cancer cells and the degree of inhibition. The three cell lines used in the experiment were respiratory system lung cancer cells A549, digestive system liver cancer cells SNU-182 and biliary tract cancer SNU-1196. All cancer cells were derived from the human body, and the CCK-8 method was used to measure the degree of inhibition of cancer cell proliferation. As a result of examining the effect on Broccoli Extract 10ug/mL, 100ug/mL, 1000ug/mL, Broccoli Extract inhibited proliferation in a concentration-dependent manner in most cancer cells, In particular, lung cancer cell A549 and liver cancer cell SNU-182 showed significant proliferation inhibition at 1000ug/mL.As a result, it can be seen that broccoli extract provides potential as a cancer preventive and therapeutic agent for tumor suppression mechanisms proven through cell experiments.

Combination of Potassium Pentagamavunon-0 and Doxorubicin Induces Apoptosis and Cell Cycle Arrest and Inhibits Metastasis in Breast Cancer Cells

  • Putri, Herwandhani;Jenie, Riris Istighfari;Handayani, Sri;Kastian, Ria Fajarwati;Meiyanto, Edy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2683-2688
    • /
    • 2016
  • A salt compound of a curcumin analogue, potassium pentagamavunon-0 (K PGV-0) has been synthesized to improve solubility of pentagamavunon-0 which has been proven to have anti-proliferative effects on several cancer cells. The purpose of this study was to investigate cytotoxic activity and metastasis inhibition by K PGV-0 alone and in combination with achemotherapeutic agent, doxorubicin (dox), in breast cancer cells. Based on MTT assay analysis, K PGV-0 showed cytotoxic activity in T47D and 4T1 cell lines with $IC_{50}$ values of $94.9{\mu}M$ and $49.0{\pm}0.2{\mu}M$, respectively. In general, K PGV-0+dox demonstrated synergistic effects and decreased cell viability up to 84.7% in T47D cells and 62.6% in 4T1 cells. Cell cycle modulation and apoptosis induction were examined by flow cytometry. K PGV-0 and K PGV-0+dox caused cell accumulation in G2/M phase and apoptosis induction. Regarding cancer metastasis, while K PGV-0 alone did not show any inhibition of 4T1 cell migration, K PGV-0+dox exerted inhibition. K PGV-0 and its combination with dox inhibited the activity of MMP-9 which has a pivotal role in extracellular matrix degradation. These results show that a combination of K PGV-0 and doxorubicin inhibits cancer cell growth through cell cycling, apoptosis induction, and inhibition of cell migration and MMP-9 activity. Therefore, K PGV-0 may have potential for development as a co-chemotherapeutic agent.

The Growth Inhibition Effect of L-1210 and S-180 Cancer Cell Lines by the Extract from Anemarrhena Asphodeloides (지모(知母) 추출물이 L-1210 및 S-180 암세포주 성장 억제에 미치는 영향)

  • Yim, Chi-Hye;Cho, Jae-Seung;Kim, Hyo-Soo;Kwon, Seung-Man;Kim, Shin;Kim, Il-Hwan;Park, Hye-Sun
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2007
  • 1. Objective This study was aimed to screen the potential antitumor activity of one kinds of Korean medicinal herb extracts against cancer cell lines and to evaluate the growth inhibition effect of L-1210 and S-180 cancer cell lines. 2. Methods It confirmed Anemarrhena asphodeloides extracts to screen the potential antitumor activity. Then, it was extracted with 4 kinds of solvents ; hexane, ethyl acetate, butanol and $H_2O$, and the Growth inhibition effect of these extracts were determined against cancer cell and normal cell. The results were as follows : The IC50(50% inhibitory concentration) values of Anemarrhena asphodeloides extracts were shown to be $253{\mu}g/ml$ against L-1210 cell lines. The IC50 values of ethyl acetate extracts were shown to be $915{\mu}g/ml$ against L-1210 cell lines. The IC50 values of butanol extracts were shown to be $52.3{\mu}g/ml$, $485{\mu}g/ml$ against L-1210, S-180 cell lines, respectively. The butanol extracts were more selectively effective than other extracts to cancer cell lines. 3. Conclusion From these data, it could be concluded that the Anemarrhena asphodeloides extracts to the Growth inhibition effect of L-1210 and S-180 cancer cell lines.

  • PDF

Inhibitory Effect of Beet Extract on Cancer Cell Proliferation (비트 추출물의 암세포 증식 저해 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.257-262
    • /
    • 2022
  • The purpose of this study was to examine the inhibition of human cancer cell proliferation by using various concentrations of Beet Extract containing various bioactive ingredients. The six cancer cell lines used in the experiment were prostate cancer cells DU-145, lung cancer cells A549, breast cancer cells MCF-7, cervical cancer cells HeLa, liver cancer cells SNU-182, and biliary tract cancer cells SNU-1196. Human-derived cancer cell lines were used. The inhibition of cancer cell proliferation at various concentrations of Beet Extract was measured by the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Beet Extract significantly and concentration-dependently inhibited DU145 of prostate cancer cells at all concentrations, and Lung cancer cells A549 and DU-145 of prostate cancer cells at 100ug/mL and 1000ug/mL, cervical cancer cells HeLa, and liver cancer cells SNU- 182, biliary tract cancer cell SNU-1196 showed significant proliferation inhibition at 1000ug/mL. Experiment result, the cancer cell proliferation inhibitory mechanisms of Beet Extract using various human-derived cancer cell lines can be considered to provide cancer prevention effects and the possibility of developing functional foods.

Antioxidant, Antimicrobial, and Cancer Cell Proliferative Inhibition Activities of Propolis

  • Kang, Ho-Jin;Ko, Ki-Wan;Lee, Ok-Hwan;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.1042-1045
    • /
    • 2009
  • A commercial propolis was investigated in terms of its antioxidant, antimicrobial, and antiproliferative activities. The contents of total phenol and flavonoid of propolis were 8.3 and 6.6 mg, respectively. The reducing power of the propolis increased with concentration increasing. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was shown at 82.70% in 1,000 ${\mu}g/mL$ of the propolis. 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging effect of antioxidant activity on the propolis was 35.64 g/sample. The propolis showed high antimicrobial activity against Bacillus cereus at all concentration of propolis. All of the cancer cell lines have 53-73% as effective growth inhibition. These results showed that the commercial propolis has potential antioxidant, antimicrobial, and cancer cell proliferative inhibition activities thus, propolis can be applied to the functional food, pharmaceutical, and cosmetic industry.

Tumour Suppressive Effects of WEE1 Gene Silencing in Breast Cancer Cells

  • Ghiasi, Naghmeh;Habibagahi, Mojtaba;Rosli, Rozita;Ghaderi, Abbas;Yusoff, Khatijah;Hosseini, Ahmad;Abdullah, Syahrilnizam;Jaberipour, Mansooreh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6605-6611
    • /
    • 2013
  • Background: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type. Materials and Methods: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF). Results: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced upregulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines. Conclusions: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

Indirubin-3-monoxime Prevents Tumorigenesis in Breast Cancer through Inhibition of JNK1 Activity

  • Kim, Mi-Yeon;Jo, Eun-Hye;Kim, Yong-Chul;Park, Hee-Sae
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.134-141
    • /
    • 2021
  • c-Jun N-terminal kinases (JNKs) have a Janus face, regulating both cell apoptosis and survival. The present study focused on understanding the function of JNK in tumor development and the chemoresistance underlying JNK-mediated cancer cell survival. We identified an inhibitor of JNK1, an important regulator of cancer cell survival. Kinase assay data showed that JNK1-dependent c-Jun phosphorylation was inhibited by indirubin derivatives. In particular, indirubin-3-monoxime (I3M) directly inhibited the phosphorylation of c-Jun in vitro, with a half inhibition dose (IC50) of 10 nM. I3M had a significant inhibitory effect on JNK1 activity. Furthermore, we carried out assays to determine the viability, migration, and proliferation of breast cancer cells. Our results demonstrated that cell growth, scratched wound healing, and colony forming abilities were inhibited by the JNK inhibitor SP600125 and I3M. The combination of SP600125 and I3M significantly decreased cancer cell proliferation, compared with either SP600125 or I3M alone. Our studies may provide further support for JNK1-targeting cancer therapy using the indirubin derivative I3M in breast cancer.

CAGE, a Novel Cancer/Testis Antigen Gene, Promotes Cell Motility by Activating ERK and p38 MAPK and Downregulating ROS

  • Shim, Hyeeun;Shim, Eunsook;Lee, Hansoo;Hahn, Janghee;Kang, Dongmin;Lee, Yun-Sil;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.367-375
    • /
    • 2006
  • We previously identified a novel cancer/testis antigen gene CAGE by screening cDNA expression libraries of human testis and gastric cancer cell lines with sera of gastric cancer patients. CAGE is expressed in many cancers and cancer cell lines, but not in normal tissues apart from the testis. In the present study, we investigated its role in the motility of cells of two human cancer cell lines: HeLa and the human hepatic cancer cell line, SNU387. Induction of CAGE by tetracycline or transient transfection enhanced the migration and invasiveness of HeLa cells, but not the adhesiveness of either cell line. Overexpression of CAGE led to activation of ERK and p38 MAPK but not Akt, and inhibition of ERK by PD98059 or p38 MAPK by SB203580 counteracted the CAGE-promoted increase in motility in both cell lines. Overexpression of CAGE also resulted in a reduction of ROS and an increase of ROS scavenging, associated with induction of catalase activity. Inhibition of ERK and p38 MAPK increased ROS levels in cells transfected with CAGE, suggesting that ROS reduce the motility of both cell lines. Inhibition of ERK and p38 MAPK reduced the induction of catalase activity resulting from overexpression of CAGE, and inhibition of catalase reduced CAGE-promoted motility. We conclude that CAGE enhances the motility of cancer cells by activating ERK and p38 MAPK, inducing catalase activity, and reducing ROS levels.

Dual Inhibition of PI3K/Akt/mTOR Pathway and Role of Autophagy in Non-Small Cell Lung Cancer Cells

  • Jeong, Eun-Hui;Choi, Hyeong-Sim;Lee, Tae-Gul;Kim, Hye-Ryoun;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.4
    • /
    • pp.343-351
    • /
    • 2012
  • Background: The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit this pathway are currently under development for lung cancer treatment. In the present study, we have tested whether dual inhibition of PI3K/Akt/mTOR signaling can lead to enahnced antitumor effects. We have also examined the role of autophagy during this process. Methods: We analyzed the combination effect of the mTOR inhibitor, temsirolimus, and the Akt inhibitor, GSK690693, on the survival of NCI-H460 and A549 non-small cell lung cancer cells. Cell proliferation was determined by MTT assay and apoptosis induction was evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Autophagy induction was also evaluated by acridine orange staining. Changes of apoptosis or autophagy-related proteins were evaluated by western blot analysis. Results: Combination treatment with temsirolimus and GSK690693 caused synergistically increased cell death in NCI-H460 and A549 cells. This was attributable to increased induction of apoptosis. Caspase 3 activation and poly(ADP-ribose) polymerase cleavage accompanied these findings. Autophagy also increased and inhibition of autophagy resulted in increased cell death, suggesting its cytoprotective role during this process. Conclusion: Taken together, our results suggest that the combination of temsirolimus and GSK690693 could be a novel strategy for lung cancer therapy. Inhibition of autophagy could also be a promising method of enhancing the combination effect of these drugs.