• Title/Summary/Keyword: Camera-based Recognition

Search Result 593, Processing Time 0.032 seconds

Development of a Simple Computer Vision System (컴퓨터 시각 장치의 개발)

  • 박동철;석민수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 1983
  • To give the recognition capability of task objects by computer vision to a sensor-based robot system, an image digitizer and some basic software techniques were developed and repofted here. The image digitizer was developed with the CROMEMCO SYSTEM III microcomputer anti C.C.T.V. camera to convert the analog valued scene into digitized image which could be pro-cessed by a digital computer. Basic software techniques for the computer vision system were aimed at the recognition of 3-dimensional objects. Experiments with these techniques were carried out using the image of a cubicle which could be considered as typical simple 3-dimensional object.

  • PDF

Road Recognition based Extended Kalman Filter with Multi-Camera and LRF (다중카메라와 레이저스캐너를 이용한 확장칼만필터 기반의 노면인식방법)

  • Byun, Jae-Min;Cho, Yong-Suk;Kim, Sung-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.182-188
    • /
    • 2011
  • This paper describes a method of road tracking by using a vision and laser with extracting road boundary (road lane and curb) for navigation of intelligent transport robot in structured road environments. Road boundary information plays a major role in developing such intelligent robot. For global navigation, we use a global positioning system achieved by means of a global planner and local navigation accomplished with recognizing road lane and curb which is road boundary on the road and estimating the location of lane and curb from the current robot with EKF(Extended Kalman Filter) algorithm in the road assumed that it has prior information. The complete system has been tested on the electronic vehicles which is equipped with cameras, lasers, GPS. Experimental results are presented to demonstrate the effectiveness of the combined laser and vision system by our approach for detecting the curb of road and lane boundary detection.

Design and Implementation of a Multimodal Input Device Using a Web Camera

  • Na, Jong-Whoa;Choi, Won-Suk;Lee, Dong-Woo
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.621-623
    • /
    • 2008
  • We propose a novel input pointing device called the multimodal mouse (MM) which uses two modalities: face recognition and speech recognition. From an analysis of Microsoft Office workloads, we find that 80% of Microsoft Office Specialist test tasks are compound tasks using both the keyboard and the mouse together. When we use the optical mouse (OM), operation is quick, but it requires a hand exchange delay between the keyboard and the mouse. This takes up a significant amount of the total execution time. The MM operates more slowly than the OM, but it does not consume any hand exchange time. As a result, the MM shows better performance than the OM in many cases.

  • PDF

Development of Camera Calibration Technique based on Object Recognition and Landmarks (물체 인식 기술 및 주변 랜드마크를 활용한 카메라 보정 기술 개발)

  • Lim, Won-Jun;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.13-14
    • /
    • 2014
  • 본 논문에서는 랜드마크를 활용한 카메라의 외곡에 대한 보정 기술을 제안한다. 이를 위해 OpenCV를 활용하여 랜드마크와 카메라로 부터 입력받은 영상의 매칭점을 비교하여 매칭 결과를 도출하며 매칭된 결과를 시스템 관리자에게 알려 줌으로써 카메라의 외곡을 확인 할 수 있다. 또한 제안한 방법을 활용하여 카메라의 외곡뿐만 아니라 외곡 각도 계산 까지 가능함에 따라 외부 환경으로 인한 카메라의 각도 변환에 대응 할 수 있으며 시스템 사용자의 편의성 및 비용 감소에도 도움이 될 것이다.

  • PDF

A Study on Detection of Object Position and Displacement for Obstacle Recognition of UCT (무인 컨테이너 운반차량의 장애물 인식을 위한 물체의 위치 및 변위 검출에 관한 연구)

  • 이진우;이영진;조현철;손주한;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.321-332
    • /
    • 1999
  • It is important to detect objects movement for obstacle recognition and path searching of UCT(unmanned container transporters) with vision sensor. This paper shows the method to draw out objects and to trace the trajectory of the moving object using a CCD camera and it describes the method to recognize the shape of objects by neural network. We can transform pixel points to objects position of the real space using the proposed viewport. This proposed technique is used by the single vision system based on floor map.

  • PDF

A Design of Real-time Facial Age Recognition System based on Depth-Camera (심도카메라 기반의 실시간 얼굴 나이 인식 시스템 설계)

  • Ko, Ginam;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.655-657
    • /
    • 2012
  • 본 논문에서는 심도(Depth) 카메라로부터 실시간 획득한 RGBD 데이터에서 심도 정보 기반의 AAM(Active Appearance Models)과 나이 인식 알고리즘[1]을 통해 4 개의 AG(Age Group)으로 분류하는 실시간 얼굴 나이 인식 시스템(Real-time Facial Age Recognition System)을 설계한다. 기존의 AAM 을 이용한 실시간 얼굴 특징 추출은 평균 약 4.17%의 프레임 손실율을 보였으나, 심도 정보를 활용한 AAM 은 평균 약 0.43%의 프레임 손실율만을 보였다[5]. 본 논문에서는 심도 정보를 활용한 AAM과 병렬 처리 방법인 CUDA 를 결합하여 나이 특징을 추출하고, 실시간 시스템에 적용 가능하도록 나이 인식 알고리즘을 개선하여 실시간 나이 인식 시스템을 설계한다. 설계된 시스템은 1)머리 위치 추적, 2)얼굴 인식 및 특징점 추출, 3)나이 특징 추출, 4) 나이 특징 분석, 5) 나이 분류의 5 가지 단계를 통해 최종적으로 4 개의 AG 로 분류한다.

Multi-Marker Augmented Reality System using Marker-Based Tracking with Vuforia

  • Yun, Hyun-Noh;Kim, Gi-Seong;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • As interest in augmented reality has increased recently, attempts have been made to incorporate augmented reality into various fields. In implementing augmented reality, the method by which markers are used is to extract feature points of markers to recognize 3D coordinates and, in some cases, it is necessary to recognize multiple markers simultaneously. Therefore, this paper proposes optimization methods for recognising multiple markers at the same time. Unity 3D and augmented reality library Vuforia are used to implement the experimental environment. The augmented reality program produced was implemented in an application form and tested using a mobile camera. We looked for optimization methods for manufacturing markers directly and for recognizing multiple markers through changes in the experimental environment. The results of the experiment can provide a higher recognition rate in an environment where multiple marker recognition is required later.

Wearable User Interface based on EOG and Marker Recognition (EOG와 마커인식을 이용한 착용형 사용자 인터페이스)

  • Kang, Sun-Kyoung;Jung, Sung-Tae;Lee, Sang-Seol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.133-141
    • /
    • 2006
  • Recently many wearable computers have been developed. But they still have many user interface problems from both an input and output perspective. This paper presents a wearable user interface based on EOG(electrooculogram) sensing circuit and marker recognition. In the proposed user interface, the EOG sensor circuit which tracks the movement of eyes by sensing the potential difference across the eye is used as a pointing device. Objects to manipulate are represented human readable markers. And the marker recognition system detects and recognize markers from the camera input image. When a marker is recognized, the corresponding property window and method window are displayed to the head mounted display. Users manipulate the object by selecting a property or a method item from the window. By using the EOG sensor circuit and the marker recognition system, we can manipulate an object with only eye movement in the wearable computing environment.

  • PDF

Hand shape recognition based on geometric feature using the convex-hull (Convex-hull을 이용한 기하학적 특징 기반의 손 모양 인식 기법)

  • Choi, In-Kyu;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1931-1940
    • /
    • 2014
  • In this paper, we propose a new hand shape recognition algorithm based on the geometric features using the convex-hull from the depth image acquired by Kinect system. Kinect is a camera providing a depth image and user's skeleton information and used for detecting hand region. In the proposed algorithm, hand region is detected in a depth image acquired by Kinect and convex-hull of the region is found. Boundary points caused by noise and unnecessary points for recognition are eliminated in the convex-hull that changes depending on hand shape. Hand shape is recognized by the sum of internal angle of a polygon that is matched with convex-hull reconstructed with selected boundary points. Through experiments, we confirm that proposed algorithm shows high recognition rate not only for five models but also those cases rotated.

A Study on the Automated Payment System for Artificial Intelligence-Based Product Recognition in the Age of Contactless Services

  • Kim, Heeyoung;Hong, Hotak;Ryu, Gihwan;Kim, Dongmin
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.100-105
    • /
    • 2021
  • Contactless service is rapidly emerging as a new growth strategy due to consumers who are reluctant to the face-to-face situation in the global pandemic of coronavirus disease 2019 (COVID-19), and various technologies are being developed to support the fast-growing contactless service market. In particular, the restaurant industry is one of the most desperate industrial fields requiring technologies for contactless service, and the representative technical case should be a kiosk, which has the advantage of reducing labor costs for the restaurant owners and provides psychological relaxation and satisfaction to the customer. In this paper, we propose a solution to the restaurant's store operation through the unmanned kiosk using a state-of-the-art artificial intelligence (AI) technology of image recognition. Especially, for the products that do not have barcodes in bakeries, fresh foods (fruits, vegetables, etc.), and autonomous restaurants on highways, which cause increased labor costs and many hassles, our proposed system should be very useful. The proposed system recognizes products without barcodes on the ground of image-based AI algorithm technology and makes automatic payments. To test the proposed system feasibility, we established an AI vision system using a commercial camera and conducted an image recognition test by training object detection AI models using donut images. The proposed system has a self-learning system with mismatched information in operation. The self-learning AI technology allows us to upgrade the recognition performance continuously. We proposed a fully automated payment system with AI vision technology and showed system feasibility by the performance test. The system realizes contactless service for self-checkout in the restaurant business area and improves the cost-saving in managing human resources.