• Title/Summary/Keyword: Camera-based Recognition

Search Result 593, Processing Time 0.029 seconds

Efficient Implementation of Candidate Region Extractor for Pedestrian Detection System with Stereo Camera based on GP-GPU (스테레오 영상 보행자 인식 시스템의 후보 영역 검출을 위한 GP-GPU 기반의 효율적 구현)

  • Jeong, Geun-Yong;Jeong, Jun-Hee;Lee, Hee-Chul;Jeon, Gwang-Gil;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.121-128
    • /
    • 2013
  • There have been various research efforts for pedestrian recognition in embedded imaging systems. However, many suffer from their heavy computational complexities. SVM classification method has been widely used for pedestrian recognition. The reduction of candidate region is crucial for low-complexity scheme. In this paper, We propose a real time HOG based pedestrian detection system on GPU which images are captured by a pair of cameras. To speed up humans on road detection, the proposed method reduces a number of detection windows with disparity-search and near-search algorithm and uses the GPU and the NVIDIA CUDA framework. This method can be achieved speedups of 20% or more compared to the recent GPU implementations. The effectiveness of our algorithm is demonstrated in terms of the processing time and the detection performance.

OpenCV-based Autonomous Vehicle (OpenCV 기반 자율 주행 자동차)

  • Lee, Jin-Woo;Hong, Dong-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.538-539
    • /
    • 2018
  • This paper summarizes the implementation of lane recognition using OpenCV, one of the open source computer vision libraries. The Linux operating system Rasbian(r18.03.13) was installed on the ARM processor-based Raspberry Pi 3 board, and Raspberry Pi Camera was used for image processing. In order to realize the lane recognition, Canny Edge Detection and Hough Transform algorithm implemented in OpenCV library was used and RANSAC algorithm was used to prevent shaking of vanishing point and to detect only the desired straight line. In addtion, the DC motor and the Servo motor were controlled so that the vehicle would run according to the detected lane.

  • PDF

Histogram Based Hand Recognition System for Augmented Reality (증강현실을 위한 히스토그램 기반의 손 인식 시스템)

  • Ko, Min-Su;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1564-1572
    • /
    • 2011
  • In this paper, we propose a new histogram based hand recognition algorithm for augmented reality. Hand recognition system makes it possible a useful interaction between an user and computer. However, there is difficulty in vision-based hand gesture recognition with viewing angle dependency due to the complexity of human hand shape. A new hand recognition system proposed in this paper is based on the features from hand geometry. The proposed recognition system consists of two steps. In the first step, hand region is extracted from the image captured by a camera and then hand gestures are recognized in the second step. At first, we extract hand region by deleting background and using skin color information. Then we recognize hand shape by determining hand feature point using histogram of the obtained hand region. Finally, we design a augmented reality system by controlling a 3D object with the recognized hand gesture. Experimental results show that the proposed algorithm gives more than 91% accuracy for the hand recognition with less computational power.

Learning-based approach for License Plate Recognition System (학습 기반의 자동차 번호판 인식 시스템)

  • 김종배;김갑기;김광인;박민호;김항준
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • This paper presents a learning-based approach for the construction of license Plate recognition system. The system consist of three modules. They are respectively, car detection module, license plate recognition module and recognition module. Car detection module detects a car in the given image sequence obtained from the camera with simple color-based approach. Segmentation module extracts the license plate in detect car image using neural network as filters for analyzing the color and texture properties of license plate. Recognition module then reads characters in detected license plate with support vector machine (SVM)-based characters recognizer. The system has been tested from parking lot and tollgate, etc. and have show the following performances on average: Car detect rate 100%, segmentation rate 97.5%, and character recognition rate about 97.2%. Overall system performances is 94.7% and processing time is one sec. Then our propose system does well using real world.

  • PDF

Design of OpenCV based Finger Recognition System using binary processing and histogram graph

  • Baek, Yeong-Tae;Lee, Se-Hoon;Kim, Ji-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.17-23
    • /
    • 2016
  • NUI is a motion interface. It uses the body of the user without the use of HID device such as a mouse and keyboard to control the device. In this paper, we use a Pi Camera and sensors connected to it with small embedded board Raspberry Pi. We are using the OpenCV algorithms optimized for image recognition and computer vision compared with traditional HID equipment and to implement a more human-friendly and intuitive interface NUI devices. comparison operation detects motion, it proposed a more advanced motion sensors and recognition systems fused connected to the Raspberry Pi.

CONSIDERATION OF THE RELATION BETWEEN DISTANCE AND CHANGE OF PANEL COLOR BASED ON AERIAL PERSPECTIVE

  • Horiuchi, Hitoshi;Kaneko, Satoru;Sato, Mie;Ozaki, Koichi;Kasuga, Masao
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.695-698
    • /
    • 2009
  • Three-dimensional (3D) shape recognition and distance recognition methods utilizing monocular camera systems have been required for field of virtual-reality, computer graphics, measurement technology and robot technology. There have been many studies regarding 3D shape and distance recognition based on geometric and optical information, and it is now possible to accurately measure the geometric information of an object at short range distances. However, these methods cannot currently be applied to long range objects. In the field of virtual-reality, all visual objects must be presented at widely varying ranges, even though some objects will be hazed over. In order to achieve distance recognition from a landscape image, we focused on the use of aerial perspective to simulate a type of depth perception and investigated the relationship between distance and color perception. The applicability of our proposed method was demonstrated in experimental results.

  • PDF

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Human Activity Recognition Using Body Joint-Angle Features and Hidden Markov Model

  • Uddin, Md. Zia;Thang, Nguyen Duc;Kim, Jeong-Tai;Kim, Tae-Seong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.569-579
    • /
    • 2011
  • This paper presents a novel approach for human activity recognition (HAR) using the joint angles from a 3D model of a human body. Unlike conventional approaches in which the joint angles are computed from inverse kinematic analysis of the optical marker positions captured with multiple cameras, our approach utilizes the body joint angles estimated directly from time-series activity images acquired with a single stereo camera by co-registering a 3D body model to the stereo information. The estimated joint-angle features are then mapped into codewords to generate discrete symbols for a hidden Markov model (HMM) of each activity. With these symbols, each activity is trained through the HMM, and later, all the trained HMMs are used for activity recognition. The performance of our joint-angle-based HAR has been compared to that of a conventional binary and depth silhouette-based HAR, producing significantly better results in the recognition rate, especially for the activities that are not discernible with the conventional approaches.

A Study on Analog and Digital Meter Recognition Based on Image Processing Technique (영상처리 기법에 기반한 아날로그 및 디지틀 계기의 자동인식에 관한 연구)

  • 김경호;진성일;이용범;이종민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1215-1230
    • /
    • 1995
  • The purpose of this paper is to build a computer vision system that endows an autonomous mobile robot the ability of automatic measuring of the analog and digital meters installed in nuclear power plant(NPP). This computer vision system takes a significant part in the organization of automatic surveillance and measurement system having the instruments and gadzets in NPP under automatic control situation. In the meter image captured by the camera, the meter area is sorted out using mainly the thresholding and the region labeling and the meter value recognition process follows. The positions and the angles of the needles in analog meter images are detected using the projection based method. In the case of digital meters, digits and points are extracted and finally recognized through the neural network classifier. To use available database containing relevant information about meters and to build fully automatic meter recognition system, the segmentation and recognition of the function-name in the meter printed around the meter area should be achieved for enhancing identification reliability. For thus, the function- name of the meter needs to be identified and furthermore the scale distributions and values are also required to be analyzed for building the more sophisticated system and making the meter recognition fully automatic.

  • PDF

Super-Resolution Iris Image Restoration using Single Image for Iris Recognition

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.117-137
    • /
    • 2010
  • Iris recognition is a biometric technique which uses unique iris patterns between the pupil and sclera. The advantage of iris recognition lies in high recognition accuracy; however, for good performance, it requires the diameter of the iris to be greater than 200 pixels in an input image. So, a conventional iris system uses a camera with a costly and bulky zoom lens. To overcome this problem, we propose a new method to restore a low resolution iris image into a high resolution image using a single image. This study has three novelties compared to previous works: (i) To obtain a high resolution iris image, we only use a single iris image. This can solve the problems of conventional restoration methods with multiple images, which need considerable processing time for image capturing and registration. (ii) By using bilinear interpolation and a constrained least squares (CLS) filter based on the degradation model, we obtain a high resolution iris image with high recognition performance at fast speed. (iii) We select the optimized parameters of the CLS filter and degradation model according to the zoom factor of the image in terms of recognition accuracy. Experimental results showed that the accuracy of iris recognition was enhanced using the proposed method.