• Title/Summary/Keyword: Camera-Reality

Search Result 379, Processing Time 0.024 seconds

A study on comparison between 3D computer graphics cameras and actual cameras (3D컴퓨터그래픽스 가상현실 애니메이션 카메라와 실제카메라의 비교 연구 - Maya, Softimage 3D, XSI 소프트웨어와 실제 정사진과 동사진 카메라를 중심으로)

  • Kang, Chong-Jin
    • Cartoon and Animation Studies
    • /
    • s.6
    • /
    • pp.193-220
    • /
    • 2002
  • The world being made by computers showing great expanses and complex and various expression provides not simply communication places but also a new civilization and a new creative world. Among these, 3D computer graphics, 3D animation and virtual reality technology wore sublimated as a new culture and a new genre of art by joining graphic design and computer engineering. In this study, I tried to make a diagnosis of possibilities, limits and differences of expression in the area of virtual reality computer graphics animation as a comparison between camera action, angle of actual still camera and film camera and virtual software for 3D computer graphics software - Maya, XSI, Softimage3D.

  • PDF

Development of Merging Algorithm between 3-D Objects and Real Image for Augmented Reality

  • Kang, Dong-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.100.5-100
    • /
    • 2002
  • A core technology for implementation of Augmented Reality is to develop a merging algorithm between interesting 3-D objects and real images. In this paper, we present a 3-D object recognition method to decide viewing direction toward the object from camera. This process is the starting point to merge with real image and 3-D objects. Perspective projection between a camera and 3-dimentional objects defines a plane in 3-D space that is from a line in an image and the focal point of the camera. If no errors with perfect 3-D models were introduced in during image feature extraction, then model lines in 3-D space projecting onto this line in the image would exactly lie in this plane. This observa...

  • PDF

Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion (가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정)

  • Park, Jong-Seung;Lee, Bum-Jong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.499-506
    • /
    • 2006
  • This Paper describes a fast and stable camera pose estimation method for real-time augmented reality systems. From the feature tracking results of a marker on a single frame, we estimate the camera rotation matrix and the translation vector. For the camera pose estimation, we use the shape factorization method based on the scaled orthographic Projection model. In the scaled orthographic factorization method, all feature points of an object are assumed roughly at the same distance from the camera, which means the selected reference point and the object shape affect the accuracy of the estimation. This paper proposes a flexible and stable selection method for the reference point. Based on the proposed method, we implemented a video augmentation system that inserts virtual 3D objects into the input video frames. Experimental results showed that the proposed camera pose estimation method is fast and robust relative to the previous methods and it is applicable to various augmented reality applications.

Implementing Augmented Reality By Using Face Detection, Recognition And Motion Tracking (얼굴 검출과 인식 및 모션추적에 의한 증강현실 구현)

  • Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2012
  • Natural User Interface(NUI) technologies introduce new trends in using devices such as computer and any other electronic devices. In this paper, an augmented reality on a mobile device is implemented by using face detection, recognition and motion tracking. The face detection is obtained by using Viola-Jones algorithm from the images of the front camera. The Eigenface algorithm is employed for face recognition and face motion tracking. The augmented reality is implemented by overlapping the rear camera image and GPS, accelerator sensors' data with the 3D graphic object which is correspond with the recognized face. The algorithms and methods are limited by the mobile device specification such as processing ability and main memory capacity.

Multi-Marker Augmented Reality System using Marker-Based Tracking with Vuforia

  • Yun, Hyun-Noh;Kim, Gi-Seong;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • As interest in augmented reality has increased recently, attempts have been made to incorporate augmented reality into various fields. In implementing augmented reality, the method by which markers are used is to extract feature points of markers to recognize 3D coordinates and, in some cases, it is necessary to recognize multiple markers simultaneously. Therefore, this paper proposes optimization methods for recognising multiple markers at the same time. Unity 3D and augmented reality library Vuforia are used to implement the experimental environment. The augmented reality program produced was implemented in an application form and tested using a mobile camera. We looked for optimization methods for manufacturing markers directly and for recognizing multiple markers through changes in the experimental environment. The results of the experiment can provide a higher recognition rate in an environment where multiple marker recognition is required later.

A Development of The Remote Robot Control System with Virtual Reality Interface System (가상현실과 결합된 로봇제어 시스템의 구현방법)

  • 김우경;김훈표;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.320-324
    • /
    • 2003
  • Recently, Virtual reality parts is applied in various fields of industry. In this paper we got under control motion of reality robot from interface manipulation in the virtual world. This paper created virtual robot using of 3D Graphic Tool. And we reappeared a similar image with reality robot put on texture the use of components of Direct 3D Graphic. Also a reality robot and a virtual robot is controlled by joystick. The developed robot consists of robot controller with vision system and host PC program. The robot and camera can move with 2 degree of freedom by independent remote controlling a user friendly designed joystick. An environment is recognized by the vision system and ultra sonic sensors. The visual mage and command data translated through 900MHz and 447MHz RF controller, respectively. If user send robot control command the use of simulator to control the reality robot, the transmitter/recever got under control until 500miter outdoor at the rate of 4800bps a second in Hlaf Duplex method via radio frequency module useing 447MHz frequency.

  • PDF

Real-Time Camera Tracking for Markerless Augmented Reality (마커 없는 증강현실을 위한 실시간 카메라 추적)

  • Oh, Ju-Hyun;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2011
  • We propose a real-time tracking algorithm for an augmented reality (AR) system for TV broadcasting. The tracking is initialized by detecting the object with the SURF algorithm. A multi-scale approach is used for the stable real-time camera tracking. Normalized cross correlation (NCC) is used to find the patch correspondences, to cope with the unknown and changing lighting condition. Since a zooming camera is used, the focal length should be estimated online. Experimental results show that the focal length of the camera is properly estimated with the proposed online calibration procedure.

Development of a Remote Wheelchair Accessibility Assessment System Using Virtualized Reality Technology (가상현실기술을 이용한 원격휠체어접근성평가시스템의 개발)

  • Kim, Jong-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.33-39
    • /
    • 2006
  • Home modification has come to be recognized as an important intervention strategy to manage health care conditions, maintain or improve functioning, ensure safety, and reduce the wheelchair user's dependency on others. However, the availability of skilled professionals with experience in home modifications for accessibility is limited. A system that enables accurate remote assessments would be an important tool to improve our ability to perform home assessments more easily and at decreased cost. A Remote Wheelchair Accessibility Assessment System (RWAAS) using Virtualized Reality(VR) technology was developed that enabled clinicians to assess the wheelchair accessibility of users' built environments from a remote location. Characteristics of the camera and 3D reconstruction program chosen for the system significantly affect its overall reliability. In this study, we performed two reliability analyses on the hardware and software components: 1) Verification that commercial software can construct sufficiently accurate 3D models by analyzing the accuracy of dimensional measurements in a virtualized environment; 2) comparison of dimensional measurements with four camera settings. Based on these two analyses, we were able to specify a consumer level digital camera and the Photomodeler Pro software for this system. And we then tested the feasibility of the selected software and hardware in an actual environment. Lastly, A field evaluation was performed to test whether this new system is comparable to the traditional method of accessibility assessment to evaluate its ability to assess the accessibility of a wheelchair user's typical built environment. The results of field trials showed high congruence between the assessments by two methods. Findings suggested that the RWAAS assessments have the potential to enable specialists to assess potential accessibility problems in built environments regardless of the location of the client, home, or specialist.

  • PDF

Design and Development of Virtual Reality Exergame using Smart mat and Camera Sensor (스마트매트와 카메라 센서를 이용한 가상현실 체험형 운동게임 시스템 설계 및 구현)

  • Seo, Duck Hee;Park, Kyung Shin;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2297-2304
    • /
    • 2016
  • In this study, we designed and developed the virtual reality Exergame using the smart mat and the camera sensor for exercises in indoor environments. For detecting the gestures of a upper body of users, the KINECT camera based the gesture recognition algorithm used angles between user's joint information system was adopted, and the smart mat system including a LED equipment and Bluetooth communication module was developed for user's stepping data during the exercises that requires the gestures and stepping of users. Finally, the integrated virtual reality Exergame system was implement along with the Unity 3D engine and different kinds of user' virtual avatar characters with entertainment game contents such as displaying gesture guideline and a scoring function. Therefore, the designed system will useful for elders who need to improve cognitive ability and sense of balance or general users want to improve exercise ability and the indoor circumstances such home or wellness centers.