• Title/Summary/Keyword: Camembert cheese

Search Result 17, Processing Time 0.02 seconds

History of cheese industry in Korea (한국의 치즈산업사)

  • Keum, Jong-Su
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.272-286
    • /
    • 2019
  • Cheesemaking is believed to have been first practiced in prehistoric times, about 9,500 years ago, in the area around the Fertile Crescent of Mesopotamia and they left legacy in the name of cheese. Father Chi Chong-Hwan(Didier Serstevens) started for his provost in Imsil Catholic church in 1964. In 1968, cheese was first produced Camembert in Korea by Father Chi Chong-hwan, and then made Mozzarella in 1970, Cheddar in 1972. Father Chi lay the foundation of a cheese industry in Korea. The processed cheese market was highly grown after putting on the market of sliced cheese in the late 1980s, and the various products that complied with wellbeing trends such as organic and high functional cheese produced in the 2000s. The natural cheese opens up a new domestic market after producing Camembert and Brie cheese in the end of 2004. At present, major trends in cheese are authenticity, bold flavor, snack sophistication and tradition. Mozzarella, Parmesan, Cheddar, Provolone, Feta cheese still top in foodservice. In Korea, production of natural cheese is decreasing by the influence of the imported cheese. Production of processed cheese is increasing and total consumption of cheese is also increasing year by year.

Prevention of Fungal Contamination during Cheese Ripening - Current Situation and Future Prospects (치즈 숙성 중의 곰팡이 오염 방제 - 현황과 전망)

  • Jung, Hoo Kil;Choi, Ha Nuel;Oh, Hyun Hee;Huh, Chang Ki;Yang, Hee Sun;Oh, Jeon Hui;Park, Jong Hyuk;Choi, Hee Young;Kim, Kyoung Hee;Lee, Seung Gu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Molds cause severe cheese deterioration, even though some white and blue molds are used for the manufacture of Camembert and Blue cheese, respectively. The species of Geotrichum, Moniliella, Aspergillus, Penicillium, Mucor, Fusarium, Phoma, and Cladosporium are the main fungi that affect contamination during cheese ripening. Once deteriorated by fungal spoilage, cheese becomes toxic and inedible. Fungal deterioration of cheese decreases the nutritional value, flavor profiles, physicochemical and organoleptic properties, and increases toxicity and infectious disease. Fungal contamination during cheese ripening is highly damaging to cheese production in Korean farmstead milk processing companies. Therefore, these companies hesitate to develop natural and ripened cheese varieties. This article discusses the recent and ongoing developments in the removal techniques of fungal contamination during cheese ripening. There are 2 categories of antifungal agents: chemical and natural. Major chemical agents are preservatives (propionic acid, sodium propionate, and calcium propionate) and ethanol. Among the natural agents, grapefruit seed extract, phytoncide, essential oils, and garlic have been investigated as natural antifungal agents. Additionally, some studies have shown that antibiotics such as natamycin and Delvocid$^{(R)}$, have antifungal activities for cheese contaminated with fungi. Microbial resources such as probiotic lactic acid bacteria, Propionibacterium, lactic acid bacteria from Kimchi, and bacteriocin are well known as antifungal agents. In addition, ozonization treatment has been reported to inhibit the growth activity of cheese-contaminating fungi.

  • PDF

Recent Developments in Cheese Flavour Research (Cheese Flavour 연구의 최근 경향)

  • Jurgen Lucas;Young Sil Han;Benno Kunz
    • Korean journal of food and cookery science
    • /
    • v.8 no.4
    • /
    • pp.351-364
    • /
    • 1992
  • 근래 유제품의 향기성분의 증강법은 효소를 사용하여 향취강도를 증가하는 방법이 개발되고 있는데 효소촉매의 생화학적 반응은 결정적으로 식품의 특징적인 향생산에 기여한다. 본 연구자료는 치즈향의 발효적 추출을 통해 식품원재료에서 생성되는 것과 같은 천연향을 얻기 위한 연구의 최근 경향을 보여준다. 치즈풍미에 특징적인 성분이 결정적인 영향을 미치지 않는 Cheddar치즈와 자기 methyl ketone과 octenol이 flavour impact component로 작용하는 Roquefort치즈와 Camembert치즈에 대하여 치즈향의 성분, 이의 형성과정 및 제조방법 등에 관하여 고찰하였다.

  • PDF

Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature

  • Kim, K.;Lee, H.;Gwak, E.;Yoon, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1013-1018
    • /
    • 2014
  • In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and $30^{\circ}C$ for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (${\mu}_{max}$; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at $10{\circ}C$ to $30^{\circ}C$C with a ${\mu}_{max}$ of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The ${\mu}_{max}$ values increased as temperature increased, while LPD values decreased, and ${\mu}_{max}$ and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

Manufacture of Precheese Powder by Use of Low-temperature Renneting Made from Raw Milk Using Spray Dryer

  • An, Shuo-Feng;Piao, Jing-Zhu;Chang, Oun-Ki
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.551-559
    • /
    • 2010
  • Among the food constituents, proteins differ in coagulation properties as compared to other constituents in food system. Especially milk protein coagulate through different pathways thus this coagulability can be used for manufacture of various dairy products or as a determinant of dairy product analysis. These milk coagulation methods include organic solvent, isoelectric point, trichloroacetic acid, Ca-sensitive casein, heavy metal ion and rennet coagulation. The coagulation experiment was performed using above parameters at $0^{\circ}C$ and $25^{\circ}C$ to find the dehydration conditions before coagulating for precheese powder making. After different chemical treatments, there was no coagulation at $0^{\circ}C$ rather at $25^{\circ}C$ whatever the mode of coagulation methods was. The appearance of precipitate with coagulation methods was quite different from above mentioned methods of coagulation illustrated by scanning electron microscope. These powders were used for fabrication of camembert cheese by renneting coagulation at $0^{\circ}C$, showing the possibility of cheese materials and of food additives for fabrication of products.

Evaluation of Benzoic Acid Level of Fermented Dairy Products during Fermentation (발효과정에서 생성되는 발효유제품의 안식향산 함량 수준 평가)

  • Lim, Sang-Dong;Park, Mi-Sun;Kim, Kee-Sung;Yoo, Mi-Young
    • Food Science of Animal Resources
    • /
    • v.33 no.5
    • /
    • pp.640-645
    • /
    • 2013
  • The purpose of this study was to utilize the results as a basic data of benzoic acids in animal products that didn't mention in the quality standard of National Veterinary Research and Quarantine Service (NVRQS) to solve the conflict of international trade and administration. Set-Pak method listed in the quality standard of NVRQS, faster than auto distillation methods with same recovery selected as a pre treatment for the determination of benzoic acid. The regression curve of benzoic acid with Sep-Pak method was linear with the $R^2$ value of 0.999 and the limit of detection (LOD) and limit of quantitation (LOQ) was 0.058 mg/kg and 0.176 mg/kg, respectively. The benzoic acid in the fermented milk was detected after the fermentation stage by addition of starter culture with the level of 2.28~10.48 mg/kg and 0~16.5 mg/kg in the commercial fermented milk products without detection by the addition of syrup. In case of cheese products, the benzoic acids level was influenced by the curd formation (Camembert cheese) and the quality of natural cheese (processed cheese), by the way, the benzoic acid level of commercial natural cheese was 0~4.2 mg/kg, processed cheese was 0~20.8 mg/kg, respectively. Based on this result, it may be possible to utilize as a basic data for the systematic control the level of natural benzoic acids in raw material, processing and final products of animal origin.

Preventive Effects of Dairy Products on Dementia and Cognitive Decline (유제품의 치매 및 인지기능 저하 예방 효과)

  • Yun, Jeong-hee;Seol, Kuk-Hwan;Yoo, Jayeon;Oh, Mi-Hwa;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The prevention of cognitive decline and dementia is an increasingly important global public health priority due to an increase in the percentage of the elderly population. Dementia, a severe cognitive disorder, not only negatively impacts the patients' quality of life but also creates a substantial burden for caregivers. This review introduced recent advances regarding the protective effects of dairy product intake against dementia and cognitive decline. Recent epidemiological studies have suggested that specific components of dairy products including bioactive peptides, colostrinin, proline-rich polypeptides, α-lactalbumin, vitamin B12, calcium, and probiotics might promote healthy brain function during aging. Additionally, oleamide and dehydroergosterol in Camembert cheese have been suggested as agents capable of reducing microglial inflammatory responses and neurotoxicity. The intake of neuroprotective and anti-inflammatory compounds in meals is safe and easy, hence nutritional approaches, including dairy product consumption, serve as a promising intervention for the prevention of neurodegenerative disorders.