• Title/Summary/Keyword: Cam-clay model

Search Result 82, Processing Time 0.027 seconds

A study on the Consolidation Characteristic of Cohesive Soil by Plastic Index (소성지수에 따른 점성토의 압밀특성에 관한 연구)

  • Kim, Chan-Kee;Cho, Won-Beom;Lee, Seung-Lun;Choi, Woo-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.99-109
    • /
    • 2008
  • The standard consolidation tests using the incremental loading technique test (IL) were performed on remolded normal consolidation and undisturbed clay samples to find out the effects of plastic index and loading period on consolidation in this study. The remolded samples used were prepared by mixing Gunsan-Samangum clay with bentonite so that they may have plasticity indexes of 15, 30, 45, and 60%, respectively. The undisturbed clay samples were collected from Inchon, Kwangyang, and Uoolsan. The samples were tested at the condition of 4 different loading periods (1, 2, 4, and 8 days). Settlement, coefficient of consolidation, compression index, secondary compression index, and pore water pressure characteristics were investigated from the plastic index and loading period aspects, and the compression index, coefficient of consolidation, and secondary compression index were formulated in terms of the plastic index and loading. To verify the applicability of proposed equations, the settlements obtained from Terzaghi's theory, modified Cam-Clay model (elasto-plastic model), and the Sekiguchi model (elasto-viscoplastic mode) were compared with the test results. The comparison indicates that the Sekiguchi model incorporating the secondary consolidation characteristic well predicts the results.

Excess Pore Pressure Induced by Cone Penetration in OC Clay (콘관입으로 인한 과압밀점토의 과잉간극수압의 분포)

  • Kim, Tai-Jun;Kim, Sang-In;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.75-87
    • /
    • 2006
  • A series of calibration chamber tests are performed to investigate the spatial distribution of the excess porewater pressure due to piezocone penetration into overconsolidated clays. It was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically, approaching zero at the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. Based on the modified Cam clay model and the cylindrical cavity expansion theory, the expressions to predict the Initial porewater pressure at the piezocone were developed, considering the effects of the strain rate and stress anisotropy. The method of predicting the spatial distribution of excess porewater pressure proposed in this study was verified by comparing it with the porewater pressure measured in overconsolidated specimens in the calibration chamber.

The Study on the Development and the Applicability of Consolidation Analysis Program Considering the Creep Strain (Creep 변형을 고려한 압밀해석 프로그램의 개발과 적용성 분석)

  • Kim, Su-Sam;Jeong, Seung-Yong;An, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.129-142
    • /
    • 1998
  • This research is focused on the inducement of the constitutive equation considering the creep strain component and on the development of a finite element method program. The purpose of this research was to contribute to the design of construction structures or to the construction management in soft clay ground through predicting the long-term strain of construction structures reasonably bused on the above program. Modified Cam Clay model was adopted to describe the elastic-plastic behavior of clayey soil. And in the calculation of the creep sprain, the secondary coefficient of consolidation C. was applied for considering the volumetric creep element and the constants m, $\alpha$, A were rosed by the empirical creep equation proposed by Singh 8E Mitchell for considering the deviatoric creep element. To examine the reliability of the program which is developed in this study, the estimated values by this program were compared with the theoretical solution and the experimental results. And the applicability of the developed program was found to be reliable from the sensitive analysis of each parameters used in this study. According to the results obtained from the application of the program on the field measurement data, the estimated values by the program were found with be consistent with the actual values. And from the analysis of the displacement of embankments, the case of considering the creep behavior induced much fower errors than the case of neglecting it. But the results obtained from considering the volumetric creep behavior only were slightly underestimated the results from considering the deviator creep behavior showed the slightly overestimated values. Therefore, it remains the task of further studios to develop the laboratory test devices to obtain the reliable creep parameters, and to select the appropriate soil parameters, etc.

  • PDF

A Comparison Study on the Two Dimensional Consolidation Analysis Methods (2 차원(次元) 압밀해석법(壓密解析法)의 비교연구(比較研究))

  • Park, Byong Kee;Chung, Jin Sup;Park, Hae Kuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.39-47
    • /
    • 1985
  • In this paper, a FEM analysis model was developed to solve the consolidation phenomena of embankment on the soft foundation. The developed FEM model was based on the Biot's consolidation equation which was coupled with one of three stress-strain constitutive relationships. In order to check the validity of the newly developed FEM model, the program input data were used by a test embankment which had been already constructed at Cubzac-les-ponts in France by Magnan et al. The FEM results compared to the experimental and analytical results which were obtained by the Magnan's group at Cubzac-les-ponts. The results compared showed that the consolidation phenomena were well explained by the author's FEM model which results were more accurate than the others. As for the pore water pressure, Christian-Boehmer's method used in this paper was considered preferable to Sandhu-Wilson's used by Magnan.

  • PDF

Centrifuge Model Test on the Bearing Capacity and Failure Mechanism of Composit Ground Improved with Slag Compaction Piles (슬래그 다짐말뚝으로 개량된 복합지반의 지지력 및 파괴메카니즘에 관한 원심모형실험)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2005
  • This paper presents experimental and numerical research results of centrifuge model tests performed to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. For centrifuge model tests, bearing capacity of composit soil improved with slag compaction piles, stress concentrations in-between pile and soft clay, settlement characteristics, and failure modes were investigated with slags differing in their relative density. A slag was found to be a good substitute for a sand since the slag compaction pile model showed a greater yield stress intensity up to $30\%$ than the sand compaction pile model under the identical testing conditions. Stress concentration ratio tended to increase with the relative density of slag pile and the clear shear lines in the piles were observed at the depth of $2D{\sim}2.5D$ (D=dia. of model pile) from the top of the piles after loading tests. Numerical analysis with a software of CRISP, implemented with the modified Cam-clay model, was carried out to simulate the results of centrifuge model test. Test results about characteristics of load-settlement curves and stress concentration ratio are in relatively good agreements with numerical estimations.

A simple creep constitutive model for soft clays based on volumetric strain characteristics

  • Chen, G.;Zhu, J.G.;Chen, Z.;Guo, W.L.
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.615-626
    • /
    • 2022
  • The soft clays are widely distributed, and one of the prominent engineering problems is the creep behavior. In order to predict the creep deformation of soft clays in an easier and more acceptable way, a simple creep constitutive model has been proposed in this paper. Firstly, the triaxial creep test data indicated that, the strain-time (𝜀-t) curve showing in the 𝜀-lgt space can be divided into two lines with different slopes, and the time referring to the demarcation point is named as tEOP. Thereafter, the strain increments occurred after the time tEOP are totally assumed to be the creep components, and the elastic and plastic strains had occurred before tEOP. A hyperbolic equation expressing the relationship between creep volumetric strain, stress and time is proposed, with several triaxial creep test data of soft clays verifying the applicability. Additionally, the creep flow law is suggested to be similar with the plastic flow law of the modified Cam-Clay model, and the proposed volumetric strain equation is used to deduced the scaling factor for creep strains. Therefore, a creep constitutive model is thereby established, and verified by successfully predicting the creep principal strains of triaxial specimens.

모아레 광간섭에 의한 금형 형상의 삼차원 자동측정과 CAD/CAM과의 연계

  • 김승우
    • Journal of the KSME
    • /
    • v.32 no.2
    • /
    • pp.175-183
    • /
    • 1992
  • 모아레토포그라피를 이용한 금형제작을 위한 클레이모형(clay model)의 3차원 형상측정을 위한 방법이 제시되었다. 그리고 모아레무늬를 해석하는 방법이 제시되어 클레이모형의 형상을 측정 하였고 디지털영상처리기법을 사용하는 일련의 과정을 통해 3차원 형상을 재현하였다. IBM PC/386과 CCD 카메라를 사용하여 실험한 결과 0.005mm의 분해능을 가지며 측정속도가 5분 가량이 소요되었다. 따라서 광학적방법이 접촉식 디지타이징을 이용하였을 경우 발생하는 많은 문제점 등을 효율적으로 보완할 수 있다. 그리고 품질검사를 자동화할 수 있는 방법을 제시하 였고 기존의 모아레토포그라피가 가지는 어려움을 극복하기 위하여 새로운 방법인 주사식 모아 레토포그라피를 제시하였다.

  • PDF

CAD for styling design

  • Park, Sehyung;Lee, Chong-won;Kim, Jin-oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.780-785
    • /
    • 1987
  • The measuring point data of clay model are widely used to design parts whose external features are important design factor such as automobiles and general die products. This paper presents a method for improving the process to generate smooth surfaces from the measuring point data using turnkey CAD/CAM system. The process of smooth-surface generation involves several steps: styline finding, curve fairing, surface generation and filleting. The process is improved by automatic curve fairing, local correction of surface and multi-boundary surface treatment. An automobile bumper and a telephone receiver are measured and modeled to test the new method. Significant time saving is resulted by changing interactive mode to automatic mode and eliminating inefficient loop of surface generation process.

  • PDF

Numerical Analysis an나bout Effects of Smear Zone in Vertical Drains on Consolidation (연직배수공법의 스미어존이 압밀에 미치는 영향에 관한 수치해석)

  • Yoo, Nam-Jae;Hong, Young-Kil;Woo, Young-Min;Jun, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.127-134
    • /
    • 2009
  • In this paper, an numerical approach is performed to investigate the effects of smear zone, occurred by penetrating vertical drains, on consolidation behavior of soft clay deposits. Such a numerical analysis is applied to the field condition to confirm its applicability. Parametric numerical analyses is carried out to study influencing factors such as permeability in smear zone, boundary of smear zone and discharge capacity of vertical drains on the consolidation of soil. As results of analyses, for the given conditions of soil, degree of consolidation is getting faster with increase of permeability of vertical drain. Degree of consolidation is delayed with decrease of permeability of smear zone. As the ratio of drain width to smear zone increases, the degree of consolidation decreases. Proposed values of influencing factors by previous researchers is found to be reliable from results of numerical analyses with Cam-clay model.

  • PDF

Aiming at "All Soils All States All Round Geo-Analysis Integration"

  • Asaoka, Akira;Noda, Toshihiro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.3-26
    • /
    • 2009
  • Superloading yield surface concept is newly introduced together with subloading yield surface conception in order to describe full gradation continuously of the mechanical behavior of soils from typical sand through intermediate soil to typical clay (All Soils). Finite deformation theory has been applied to the soil skeleton-pore water coupled continuum mechanics, which enables us to discuss things in a perpetual stream from stable state to unstable state like from deformation to failure and vice versa like from liquefaction to post liquefaction consolidation of sand (All States). Incremental form of the equation of motion has been employed in the continuum mechanics in order to incorporate a rate type constitutive equation, which is "All Round" enough to predict ground behavior under both static and dynamic conditions. The present paper is the shortened version of the lecture note delivered in 2008 Theoretical and Applied Mechanics Conference, Science Council Japan, but with newly developed application examples.

  • PDF