• Title/Summary/Keyword: Calvarial bone graft

Search Result 95, Processing Time 0.019 seconds

A Size Change of Bone Defect Area after Autogenous Calvarial Bone Graft (자가 머리뼈 이식 후 뼈결손부의 면적 변화)

  • Hyun, Kyung Bae;Kim, Dong Suk;Yoo, Sun Kook;Kim, Hee Joung;Kim, Yong Oock;Park, Be-young Yun
    • Archives of Plastic Surgery
    • /
    • v.32 no.4
    • /
    • pp.467-473
    • /
    • 2005
  • Calvarial bone grafting in craniomaxillofacial trauma and facial reconstructive surgery is now widely recognized and accepted as a standard procedure. One of the commonly reported problems of calvarial bone graft is the contour defect caused by partial resorption of the graft. But, there are few reports that discuss the fate of the calvarial bone graft based on the quantitative data. In this article, the changes of grafted calvarial bone were evaluated using 3-dimensional computed tomography(CT). 9 patients were observed with the CT scans at 2mm thickness immediately after operation and at the time of last follow-up. The area of the bone defect was segmented on the 3-dimensional CT image and calculated by AnalyzeDirect 5.0 software. The immediate postoperative bone defect area of the recipient site and the donor site were $612.9mm^2$ and $441.5mm^2$, respectively, which became $1028.1mm^2$ and $268.8mm^2$, respectively at the last follow-up. In conclusion, the bone defect area was less increased on the donor site of calvarial bone graft than on the recipient site. And the CT scan is a valuable imaging method to assess and follow-up the clinical outcome of calvarial bone grafting.

The Fate of Calvarial Bone Graft in Nasal Tip Plasty Patients Followed Up for Over 10 Years (10년 이상 장기 추적된 두개골 외판을 이용한 비첨성형술 환자의 골이식편의 운명)

  • Kim, Deok-Jung;Lee, Soo-Hyang;Hwang, Eun-A;Choi, Hyun-Gon;Kim, Soon-Heum;Shin, Dong-Hyeok;Uhm, Ki-Il
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.671-675
    • /
    • 2010
  • Purpose: In order to maintain corrected nasal tip projection, strong support is important. Authors used calvarial bone graft method for this purpose. Patients were followed up about permanency of the bone graft for a long time. Methods: From 1995 to 1998, author performed calvarial bone graft on 30 adult patients with secondary cleft lip and nose deformity. Patients were observed for 34 months. There were no specific complications, and results were satisfactory. We could confirm the permanence of the calvarial bone graft in 3 patients by photography and radiologic studies for 10 years follow-up. Results: None of the patients showed size change or displacement. But the portion of graft facing the tip was absorbed resulting in loss of tip projection and short nose in two patients. One patient had fracture on the middle of the graft. This caused depression from lower portion of the dorsum to the tip. Conclusion: Despite of autogenous grafts such as calvarial bone, absorption of the bone may occur when compressed with tension for a long period. And the graft in the nasal tip not having any contact with the nasal bone may cause absorption of the graft.

A COMPARATIVE STUDY ON THE STRENGTH AND THE BONE FORMATION AT THE RATS CALVARIAL DEFECTS OF DFDB GRAFT AND THOSE OF THE COMPOSITE GRAFT WITH DFDB AND RESORBABLE HYDROXYAPATITE (백서 두개골 결손부에 동결 건조 동종 탈회골을 단일매식한 경우와 동결 건조 동종 탈회골과 흡수성 수산화인회석을 복합매식한 경우의 강도 및 골형성에 관한 비교 연구)

  • Seo, Young-Ho;Yim, Chang-Joon;Lee, Jae-Il
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.6
    • /
    • pp.557-564
    • /
    • 2000
  • The bone graft materials can be grossly divided into autogenous bone, allogenic bone, xenogenic bone, and alloplastic material. Much care was given to other bone graft materials away from autogenous bone due to its additional operation for harvesting, delayed resorption and limitation of quantity. Demineralized freeze-dried bone(DFDB) and hydroxyapatite are the representatives of bone graft materials. As resorbable hydroxyapatite is developed in these days, the disadvantage of nonresorbability can be overcome. So we planned to study on the strength and the bone formation at the rats calvarial defects of DFDB graft and those of the composite graft with DFDB and resorbable hydroxyapatite. We used the 16 male rats weighting range from 250 to 300 gram bred under the same environment during same period. After we made the 6mm diameter calvarial defect, we filled the DFDB in 8 rats and DFDB and resorbable hydroxyapatite in another 8 rats. We sacrificed them at the postoperative 1 month and 2 months with the periostium observed. As soon as the specimens were delivered, we measured the compressive forces to break the normal calvarial area and the newly formed bone in calvarial defect area using Instron(Model Autograph $S-2000^{(R)}$, Shimadzu, Japan). The rest of the specimens were stained with H&E(Hematoxylin & Eosin) and evaluated with the light microscope. So we got the following results. 1. In every rats, there was no significant difference between the measured forces of normal bone area and those of the bone graft area. 2. In 1 month, the measured forces at DFDB graft group were higher than those of the DFDB and resorbable hydroxyapatite composite graft group(P<0.05). 3. In 2 months, there was no significant differences between the measured forces of DFDB graft group and those of the DFDB and resorbable hydroxyapatite composite graft group. 4. In lightmicroscopic examination, most of the grafted DFDB were transformed into bone in 1 month and a large numbers of hydroxyapatite crystal were observed in DFDB and resorbable hydroxyapatite composite graft group in 1 month. 5. Both group showed no inflammatory reaction in 1 month. And hydroxyapatite crystals had a tight junction without soft tissue invagination when consolidated with newly formed bone. 6. In both groups, newly formed bone showed the partial bone remodeling and the lamellar bone structures and some of reversal lines were observed in 2 months. From the above results, it is suggested that DFDB and resorbable hydroxyapatite composite graft group had a better resistance to compressive force in early stage than DFDB graft group, but there would be no significant difference between two groups after some period. And it is suggested that the early stage of bone formation procedure of DFDB and resorbable hydroxyapatite composite graft group was slight slower than that of DFDB graft group, but there would be no significant difference between two groups after some period.

  • PDF

Autogenous Calvarial Particulate Bone Grafting in Craniosynostosis (머리뼈 붙음증에서의의 자가 두개 미립뼈 이식술)

  • Chung, Seung-Moon
    • Archives of Plastic Surgery
    • /
    • v.38 no.3
    • /
    • pp.222-227
    • /
    • 2011
  • Purpose: Autogenous particulate bone grafting is a type of autogenous bone graft that consists of small particles of cortical and cancellous bone. Autogenous particulate bone grafting has been used for calvarial bone defect after calvarial defect of craniosynostosis and prevention of temporal depression after fronto-orbital advancement. The results were followed up and studied for effectiveness of autogenous calvarial particulate bone grafting. Methods: Cranial vault remodeling and fronto-orbital advancement was performed for six craniosynostosis patient from August 2005 to October 2007. Autogenous particulate bone grafting was harvested from endocortex of separated cranial vault and if insufficient, from extocortex of occipital region using Hudson brace & D'Errico craniotomy bit and was grafted on the calvarial bone defect of cranial vault and temporal hollow. Fibrin glues were added to the harvested particulated bone for adherence and shaping of paticles. Results: Autogenous particulate bone grafting was followed-up at least longer than I year. The calvarial bony defects following primary cranial remodeling were successfully covered and postoperative temporal depressions after fronto-orbital advancement were also well prevented by grafted particulated bone. Conclusion: Autogenous calvarial particulate bone graft can be harvested in infants and young children with minimal donor site morbidity. It effectively heals cranial defects in children and during fronto-orbital advancement reduces the prevalence of osseous defects independent of patient age. It's easy and effective method of reconstruction of calvarial defect.

Anterior Cranial Base Reconstruction with a Reverse Temporalis Muscle Flap and Calvarial Bone Graft

  • Kwon, Seung Gee;Kim, Yong Oock;Rah, Dong Kyun
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2012
  • Background Cranial base defects are challenging to reconstruct without serious complications. Although free tissue transfer has been used widely and efficiently, it still has the limitation of requiring a long operation time along with the burden of microanastomosis and donor site morbidity. We propose using a reverse temporalis muscle flap and calvarial bone graft as an alternative option to a free flap for anterior cranial base reconstruction. Methods Between April 2009 and February 2012, cranial base reconstructions using an autologous calvarial split bone graft combined with a reverse temporalis muscle flap were performed in five patients. Medical records were retrospectively analyzed and postoperative computed tomography scans, magnetic resonance imaging, and angiography findings were examined to evaluate graft survival and flap viability. Results The mean follow-up period was 11.8 months and the mean operation time for reconstruction was $8.4{\pm}3.36$ hours. The defects involved the anterior cranial base, including the orbital roof and the frontal and ethmoidal sinus. All reconstructions were successful. Viable flap vascularity and bone survival were observed. There were no serious complications except for acceptable donor site depressions, which were easily corrected with minor procedures. Conclusions The reverse temporalis muscle flap could provide sufficient bulkiness to fill dead space and sufficient vascularity to endure infection. The calvarial bone graft provides a rigid framework, which is critical for maintaining the cranial base structure. Combined anterior cranial base reconstruction with a reverse temporalis muscle flap and calvarial bone graft could be a viable alternative to free tissue transfer.

A Case Report of an Immediate Frontal Sinus Reconstruction Using an Outer Table Calvarial Bone Graft in an En Bloc Manner (전두동 골절 환자에서 머리덮개뼈의 바깥판을 한판으로 이용한 즉시 전두동 재건술 1례)

  • Kim, Jong Do;Kim, Jeong Tae;Kim, Youn Hwan
    • Archives of Craniofacial Surgery
    • /
    • v.12 no.1
    • /
    • pp.33-36
    • /
    • 2011
  • Background: In a frontal sinus reconstruction, the literature primarily recommends a surgical approach for definite treatment with the exception of for anterior wall fractures with no dislocation. Many studies have assessed a range of methods for the reduction of frontal sinus fractures. This paper presents a case, in whom the anterior wall of the frontal sinus was reconstructed using an outer table calvarial bone graft in an en bloc manner. Patient and methods: A 36-year-old male visited the emergency room with a heavy injury to the forehead. He was diagnosed with fractures of the anterior and posterior wall of the frontal sinus. The neurosurgeon removed the fractured area and repaired the meninges. Afterwards, cranialization was performed and the opening of the nasofrontal duct was obstructed. After fixing the removed bone to its original location, all fragments of fractured anterior wall were purged out and the anterior wall reconstructed using an en bloc calvarial bone graft. Results: In the post-operative 8 months period, there were no complications, the round contour of the forehead was expressed well and the patient was satisfied with the result. Conclusion: There are many methods for reconstructing the anterior wall of the frontal sinus. On the other hand, in cases of large fracture sites with many fractured bone fragments, en bloc harvesting of the outer table calvarial bone could be a better choice than making use of only plates and screws because this method shows a good results in terms of aesthetics with a low complication rate.

Treatment of fibrous dysplasia of the zygomaticomaxillary complex with radical resection and three-dimensional reconstruction with autologous calvarial bone graft

  • Ahn, Sung Jae;Hong, Jong Won;Kim, Yong Oock;Lew, Dae Hyun;Lee, Won Jai
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.3
    • /
    • pp.200-204
    • /
    • 2018
  • Fibrous dysplasia (FD) is a rare, benign bone disease with abnormal bone maturation and fibroblastic proliferation. Optimal treatment of zone 1 craniofacial FD is radical resection and reconstruction. To achieve of structural, aesthetic, and functional goals, we use three-dimensionally designed calvarial bone graft for reconstruction of zygomatic defect after radical resection of FD. The authors used a rapid-prototyping model for simulation surgery for radical resection and immediate reconstruction. Donor site was selected from parietal bone reflect shape, contour, and size of defect. Then radical resection of lesion and immediate reconstruction was performed as planned. Outcomes were assessed using clinical photographs and computed tomography scans. Successful reconstruction after radical resection was achieved by three-dimensional calvarial bone graft without complications. After a 12-month follow-up, sufficient bone thickness and symmetric soft tissue contour was well-maintained. By considering three-dimensional configuration of zygomaticomaxillary complex, the authors achieved satisfactory structural, aesthetic and functional outcomes without complications.

Comparison of the bone healing capacity of autogenous bone, demineralized freeze dried bone allograft, and collagen sponge in repairing rabbit cranial defects

  • Hur, Jung-Woo;Yoon, Suk-Ja;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • Objectives: This study sought to evaluate the efficacy of collagen graft materials, as compared to other graft materials, for use in healing calvarial defects in rabbits. Materials and Methods: Ten mm diameter calvarial defects were made in ten rabbits. The rabbits were then divided into 4 groups: control, autogenous bone graft, SureOss graft, and Teruplug graft. Bone regeneration was evaluated using histological and radiographic methods. Results: Based on visual examination, no distinct healing profile was observed. At 4 weeks after treatment, histological analysis showed there was no bone regeneration in the control group; however, at 8 weeks after treatment, new bone formation was observed around the margin of the defective sites. In the autogenous bone graft group, new bone formation was observed at 4 weeks after treatment and mature bone was detected around the grafted bone after 8 weeks. In the SureOss graft group, at 4 weeks after treatment, acute inflammatory and multinuclear cells were noted around the grafted materials; at 8 weeks after treatment, a decrease in graft materials coupled with new bone formation were observed at the defective sites. In the Teruplug graft group, new bone formation was detected surrounding the bone margin and without signs of inflammation. There were statistically significant differences observed between the graft and control group in terms of bone density as evidenced by radiographic analysis using computed tomography (P<0.05), particularly for the autogenous bone graft group (P<0.001). Conclusion: These results suggested that autogenous bone, SureOss and Teruplug have the ability to induce bone regeneration as compared to an untreated control group. The osteogenic potential of Teruplug was observed to be lower than that of autogenous bone, but similar to that of SureOss.

A STUDY OF EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON OSTEOGENESIS IN RABBIT CRANIAL BONE DEFECT (가토 두개부 골결손에서 맥동전자기장이 골형성에 미치는 영향에 관한 연구)

  • Hwang, Kyung-Gyun;Lee, Jong-Hwan;Kim, Myung-Jin;Shim, Kwang-Sup;Kim, Jong-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.264-273
    • /
    • 2002
  • Pulsed electromagnetic field (PEMF) was used first to induce osteogenesis in 1974. The appliance which was consisted of the Helmholtz coil configuration have used to osteogensis. The objective of this study was to determine whether PEMF, a frequency of 100 Hz and magnetic field strength of 38 gauss applied to the calvarial defect in rabbit, could affect the induction of osteogenesis and the healing of the graft bone. This field should not produce excitation of nerve or muscle and heating the tissue. To evaluate the effect of PEMF on osteogenesis, 16 rabbit under the same condition was divided into 8 experimental groups and 8 control groups. 10 mm calvarial bone defects were formed around sagittal suture. The defect of left side was left without graft while the defect of right side was grafted by bone harvested from left side. A pulsed electromagnetic field was applied for 8 hours per day. Each group was sacrificed after 1 week, 2 weeks, 4 weeks, 8 weeks. Microscopic specimens were obtained from the calvarial bone defects and surrounding tissue using Hematoxylin-Eosin staining method. The results were as follows. 1. In the group which pulsed electromagnetic field was applied, new bone formation filled up the defect was observed after 4 and 8 weeks effectively. 2. There are no difference in the healing period for the fusion between the bone and graft bone. According to the result, the PEMF with 38 Gauss, 100 Hz was very effective in the healing of bone defect and new bone formation. So The PEMF will be useful in clinical aspect for oseteogenesis.

Restoration of Calvarial Defect Using a Variety of Xenogenous Tooth Bone Graft Material: Animal Study (다양한 이종치아 골이식재를 이용한 두개골 결손부 수복: 동물 연구)

  • Kim, Young-Kyun;Kim, Jong-Hwa;Hwang, Ji-Yeon;Um, In-Woong;Jeong, Dongjun;Yun, Pil-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.5
    • /
    • pp.299-310
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the histological healing process of 3 different types of xenogenic tooth bone graft material and xenogenic bone graft material. Methods: Three types of human tooth bone graft material (chips, crowns, and roots) and BioOss (Geistlich Pharma AG, Wolhausen, Switzerland) was filled at the preformed 4 round-shaped calvarial bone defects of beagle dogs. The beagles were sacrificed at 2, 4, 8, and 12 weeks, respectively, for radiological and histological evaluation. Results: Increased strength and radiopacity were detected in all graft material groups in time-dependent manner. New bone was formed and matured surrounding the graft material histologically. Also, a new bone was directly integrated with graft material. Conclusion: It was expected that newly developed tooth bone graft material would show good bone healing capacity if it was used as a graft material for the restoration of bony defect.