• Title/Summary/Keyword: Calpain inhibitor

Search Result 28, Processing Time 0.024 seconds

Involvement of NOX2-derived ROS in human hepatoma HepG2 cell death induced by Entamoeba histolytica

  • Young Ah Lee ;Myeong Heon Shin
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Entamoeba histolytica is an enteric tissue-invasive protozoan parasite causing amoebic colitis and liver abscesses in humans. Amoebic contact with host cells activates intracellular signaling pathways that lead to host cell death via generation of caspase-3, calpain, Ca2+ elevation, and reactive oxygen species (ROS). We previously reported that various NADPH oxidases (NOXs) are responsible for ROS-dependent death of various host cells induced by amoeba. In the present study, we investigated the specific NOX isoform involved in ROS-dependent death of hepatocytes induced by amoebas. Co-incubation of hepatoma HepG2 cells with live amoebic trophozoites resulted in remarkably increased DNA fragmentation compared to cells incubated with medium alone. HepG2 cells that adhered to amoebic trophozoites showed strong dichlorodihydrofluorescein diacetate (DCF-DA) fluorescence, suggesting intracellular ROS accumulation within host cells stimulated by amoebic trophozoites. Pretreatment of HepG2 cells with the general NOX inhibitor DPI or NOX2-specific inhibitor GSK 2795039 reduced Entamoeba-induced ROS generation. Similarly, Entamoeba-induced LDH release from HepG2 cells was effectively inhibited by pretreatment with DPI or GSK 2795039. In NOX2-silenced HepG2 cells, Entamoeba-induced LDH release was also significantly inhibited compared with controls. Taken together, the results support an important role of NOX2-derived ROS in hepatocyte death induced by E. histolytica.

Secretome Analysis of Host Cells Infected with Toxoplasma gondii after Treatment of Human Epidermal Growth Factor Receptor 2/4 Inhibitors

  • Kim, Hye-Jung;Ahn, Hye-Jin;Kang, Hyeweon;Park, Jaehui;Oh, Seul gi;Choi, Saehae;Lee, Won-Kyu;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.3
    • /
    • pp.249-255
    • /
    • 2020
  • Toxoplasma gondii, a ubiquitous, intracellular parasite of the phylum Apicomplexa, infects an estimated one-third of the human population as well as a broad range of warm-blooded animals. We have observed that some tyrosine kinase inhibitors suppressed the growth of T. gondii within host ARPE-10 cells. Among them, afatinib, human epithermal growth factor receptor 2 and 4 (HER2/4) inhibitor, may be used as a therapeutic agent for inhibiting parasite growth with minimal adverse effects on host. In this report, we conducted a proteomic analysis to observe changes in host proteins that were altered via infection with T. gondii and the treatment of HER2/4 inhibitors. Secreting proteins were subjected to a procedure of micor basic reverse phase liquid chromatography, nano-liquid chromatography-mass spectrometry, and ingenuity pathway analysis serially. As a result, the expression level of heterogeneous nuclear ribonucleoprotein K, semaphorin 7A, a GPI membrane anchor, serine/threonine-protein phosphatase 2A, and calpain small subunit 1 proteins were significantly changed, and which were confirmed further by western blot analysis. Changes in various proteins, including these 4 proteins, can be used as a basis for explaining the effects of T. gondii infections and HER2/4 inhibitors.

Proliferation of Toxoplasma gondii Suppresses Host Cell Autophagy

  • Lee, Youn-Jin;Song, Hyun-Ouk;Lee, Young-Ha;Ryu, Jae-Sook;Ahn, Myoung-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.3
    • /
    • pp.279-287
    • /
    • 2013
  • Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.

Calpeptin Prevents Malignant Pleural Mesothelioma Cell Proliferation via the Angiopoietin-1/Tie-2 System

  • Tabata, Chiharu;Tabata, Rie;Nakano, Takashi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3405-3409
    • /
    • 2016
  • Malignant pleural mesothelioma (MPM), an aggressive malignant tumor of mesothelial origin associated with asbestos exposure, shows a limited response to conventional chemotherapy and radiotherapy. Therefore, the overall survival of MPM patients remains very poor. Progress in the development of therapeutic strategies for MPM has been limited. We recently reported that the calpain inhibitor, calpeptin exerted inhibitory effects on pulmonary fibrosis by inhibiting the proliferation of lung fibroblasts. In the present study, we examined the preventive effects of calpeptin on the cell growth of MPM, the origin of which is mesenchymal cells, similar to lung fibroblasts. Calpeptin inhibited the proliferation of MPM cells, but not mesothelial cells. It also prevented 1) the expression of angiopoietin (Ang)-1 and Tie-2 mRNA in MPM cells, but not mesothelial cells and 2) the Ang-1-induced proliferation of MPM cells through an NF-kB dependent pathway, which may be the mechanism underlying the preventive effects of calpeptin on the growth of MPM cells. These results suggest potential clinical use of calpeptin for the treatment of MPM.

Mapping of the Porcine Calpastatin Gene and Association Study of Its Variance with Economic Traits in Pigs

  • Choi, B.H.;Lee, J.S.;Jang, G.W.;Lee, H.Y.;Lee, J.W.;Lee, K.T.;Chung, H.Y.;Park, H.S.;Oh, S.J.;Sun, S.S.;Myung, K.H.;Cheong, I.C.;Kim, T.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1085-1089
    • /
    • 2006
  • The objectives of this study were to confirm a location of the calpastatin (CAST) gene in chromosome 2 and to detect associations of genetic variations with economic traits in the porcine CAST gene as a candidate gene for growth and meat quality traits in pigs. Calpastatin is a specific endogenous inhibitor of calpains. The calpain protease system is ubiquitous, and is involved in numerous growth and metabolic processes. Three single nucleotide variations were identified within a 1.6 kb fragment of the porcine CAST gene and these polymorphisms were used for genetic linkage mapping. Linkage and QTL mapping were performed with the National Livestock Research Institute (NLRI) reference families using eight microsatellites and SNP makers in the CAST gene. The porcine CAST gene was mapped adjacent to the markers, SW395 and SW1695 on SSC2 with LOD scores of 15.32 and 8.50, respectively. According to the QTL mapping, a significant association was detected at 82 cM between SW395 and CAST-Hinf I for weight at the age of 30 weeks. In addition, an association study was performed with the $F_2$ animals of NLRI reference families for Hinf I, Msp I and Rsa I polymorphisms in the CAST gene. Two polymorphisms, CAST-Rsa I and CAST-Hinf I, showed significant correlation for growth traits at p<0.01 and p<0.05, respectively.

Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells

  • Shin, Dong-Hyun;Leem, Dong-Gyu;Shin, Ji-Sun;Kim, Joo-Il;Kim, Kyung-Tack;Choi, Sang Yoon;Lee, Myung-Hee;Choi, Jung-Hye;Lee, Kyung-Tae
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.165-174
    • /
    • 2018
  • Background: Extended endoplasmic reticulum (ER) stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. Methods: The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. Results: Compound K-induced ER stress was confirmed through increased phosphorylation of $eIF2{\alpha}$ and protein levels of GRP78/BiP, XBP-1S, and $IRE1{\alpha}$ in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular $Ca^{2+}$ chelator) or dantrolene (an RyR channel antagonist). These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12) partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor) dramatically improved the compound K-induced apoptosis. Conclusion: Cell survival and intracellular $Ca^{2+}$ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway.

An Experimental Study of Effect on ECV 304 Cells, Platelet Rich Plasma and Rats treated with L-NAME by Ondamtang extract (온담탕이 고혈압 백서와 인간유래 혈관내피세포주(ECV 304)에 미치는 영향)

  • Baek Il-Sung;Park Chang-Gook;Lee So-Yeon;Yoon Hyeon-Deok;Sin Wo-Chul;Park Chi-Sang
    • Herbal Formula Science
    • /
    • v.12 no.2
    • /
    • pp.175-202
    • /
    • 2004
  • Nitric oxide(NO) play an important role in normal and pathophysiological cells including as a messenger molecule, neurotransmitter, microbiocidal agent, or dilator of blood vessels and artheriosclerosis, hypertension, myocardial infarction, respectively. To investigate that Ondamtang in the potential contribution of the levels of nitric oxide generated by endothelial nitric oxide synthase (eNOS) and the mechanisms of protection against L-NAME, human ECV304 cells, which normally do not express eNOS, were expressed by L-NAME. L-NAME stimulated rat or cells were found to be resistant to injury and delayed death following the Ondam-tang. Inhibition of nitric oxide synthesis abolished the protective effect against L-NAME, thrombin and collagen exposure. Interestingly, such effects have bee observed during stimulation with agents such as KCl on L-NAME mediate rats, were damaged by the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Cardiovascular diseases is one of the blood vessels and renin-angiotensin system dynfunction. So we studied on herbal medicine that have a relation of vessels endothelium necrosis. In Oriental Medicine, Ondam-tang has been used for disease in relation to cardiovascular system. We studied on the protection and inhibitory effects of cardiovascular diseases in L-NAME induced rat or ECV304 cell lines through the Cell morphological pattern, Tunel assay, LDH activity, heart rate, blood pressure and immunohistochemistric analysis by Ondam-tang. As the result of this study, In group, the anti-apoptosis and necrosis in the cardiovascular system have a potential capacity for prevented, protected and treating the diseases of cardiovascular system, against the necrosis of rat and ECV304 cells with eNOS and calpain expression by L-NAME is promoted.

  • PDF

An Experimental Study of Effect on ECV 304 Cells, Platelet Rich Plasma and Rats treated with L-NAME by Boonsimgieum extract (분심기음(分心氣飮)이 고혈압 백서와 인간유래 혈관내피세포주(ECV 304)에 미치는 영향에 대한 연구)

  • Jeon, Yeon-Yi;Park, Chang-Gook;Lee, So-Yeon;Yoon, Hyeon-Deok;Shin, Wo-Cheol;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.182-198
    • /
    • 2005
  • Object : This study was designed to research whether the protection and inhibitory effects of cardiovascular diseases in L-NAME induced rat or ECV 304 cell lines through the Cell morphological pattern, Tunel assay, LDH activity, heart rate, blood pressure and immunohistochemistric analysis by Boonsimgieum water extract Methods : Nitric oxide(NO) play an important role in normal and pathophysiological cells including as a messenger molecule, neurotransmitter, microbiocidal agent, or dilator of blood vessels and artheriosclerosis, hypertension, myocardial infarction, respectively. Endothelial cell products can modulate the magnitude of a response to a vasoconstrictor, as evinced by the greater constriction after endothelium removal or NO synthesis blockade. To investigate that Boonsimgieum in the potential contribution of the levels of nitric oxide generated by endothelial nitric oxide synthase (eNOS) and the mechanisms of protection against NG-nitro-L-arginine methyl ester (L-NAME), human ECV 304 cells, which normally do not express eNOS, were expressed by L-NAME. L-NAME stimulated rat or cells were found to be resistant to injury and delayed death following the Boonsimgieum. Inhibition of nitric oxide synthesis abolished the protective effect against L-NAME, thrombin and collagen exposure. Interestingly, such effects have been observed during stimulation with agents such as phenylephrine and KCl on L-NAME mediate rats, were damaged by the NOS inhibitor L-NAME. Result : As the result of this study, In group, the anti-apoptosis and necrosis in the cardiovascular system have a potential capacity for prevented, protected and treating the diseases of cardiovascular system, against the necrosis of rat and ECV 304 cells with Caspase 3 and calpain expression by L-NAME is promoted. Conclusion : these results demonstrate neuroprotective and memory enhancing effects of ZIBU, suggesting its beneficial actions for the treatment of AD.

  • PDF