• Title/Summary/Keyword: California State

Search Result 351, Processing Time 0.024 seconds

Experiences of Korean-American Women with High Risk Hereditary Breast Cancer (고위험 유전성 유방암을 지닌 한국계 미국 여성의 질병경험)

  • Choi, Kyung-Sook;Jun, Myung-Hee;Anderson, Gwen
    • Asian Oncology Nursing
    • /
    • v.12 no.2
    • /
    • pp.175-185
    • /
    • 2012
  • Purpose: This micro-ethnographic study aimed to understand coping experiences of Korean-American (K-A) women after diagnosis with breast cancer due to a hereditary gene mutation. Methods: Participatory observation and in-depth interviews were performed at one breast cancer screening center in Southern California, in 2005 with eleven first generation K-A immigrant women. All transcribed interviews and field notes were analyzed using ethnographic methodology. Results: K-A women's experience varied based on acculturation risk factors including: limited English speaking ability; disrupted family relationships, individualistic family values, or intergenerational communication barriers; lack of Korean speaking nurses; and Korean physicians' who lacked knowledge about hereditary breast cancer risk. These risk factors led to isolation, loneliness, lack of emotional and social support. In comparison to Korean homeland women in a similar medical situation, these K-A immigrants felt disconnected from the healthcare system, family support and social resources which increased their struggling and impeded coping during their survivorship journey. These women were not able to access self-support groups, nor the valuable resources of nurse navigator programs. Conclusion: Professional oncology associations for nurses and physicians have a moral obligation to support and promote knowledge of hereditary cancer risk and self-help groups for non-native speaking immigrants.

Alternative reliability-based methodology for evaluation of structures excited by earthquakes

  • Gaxiola-Camacho, J. Ramon;Haldar, Achintya;Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;Vazquez-Becerra, G. Esteban;Vazquez-Hernandez, A. Omar
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.361-377
    • /
    • 2018
  • In this paper, an alternative reliability-based methodology is developed and implemented on the safety evaluation of structures subjected to seismic loading. To effectively elaborate the approach, structures are represented by finite elements and seismic loading is applied in time domain. The accuracy of the proposed reliability-based methodology is verified using Monte Carlo Simulation. It is confirmed that the presented approach provides adequate accuracy in calculating structural reliability. The efficiency and robustness in problems related to performance-based seismic design are verified. A structure designed by experts satisfying all post-Northridge seismic design requirements is studied. Rigidities related to beam-to-column connections are incorporated. The structure is excited by three suites of ground motions representing three performance levels: immediate occupancy, life safety, and collapse prevention. Using this methodology, it is demonstrated that only hundreds of deterministic finite element analyses are required for extracting reliability information. Several advantages are documented with respect to Monte Carlo Simulation. To showcase an applicability extension of the proposed reliability-based methodology, structural risk is calculated using simulated ground motions generated via the broadband platform developed by the Southern California Earthquake Center. It is validated the accuracy of the broadband platform in terms of structural reliability. Based on the results documented in this paper, a very solid, sound, and precise reliability-based methodology is proved to be acceptable for safety evaluation of structures excited by seismic loading.

Iterative LBG Clustering for SIMO Channel Identification

  • Daneshgaran, Fred;Laddomada, Massimiliano
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • This paper deals with the problem of channel identification for Single Input Multiple Output (SIMO) slow fading channels using clustering algorithms. Due to the intrinsic memory of the discrete-time model of the channel, over short observation periods, the received data vectors of the SIMO model are spread in clusters because of the AWGN noise. Each cluster is practically centered around the ideal channel output labels without noise and the noisy received vectors are distributed according to a multivariate Gaussian distribution. Starting from the Markov SIMO channel model, simultaneous maximum ikelihood estimation of the input vector and the channel coefficients reduce to one of obtaining the values of this pair that minimizes the sum of the Euclidean norms between the received and the estimated output vectors. Viterbi algorithm can be used for this purpose provided the trellis diagram of the Markov model can be labeled with the noiseless channel outputs. The problem of identification of the ideal channel outputs, which is the focus of this paper, is then equivalent to designing a Vector Quantizer (VQ) from a training set corresponding to the observed noisy channel outputs. The Linde-Buzo-Gray (LBG)-type clustering algorithms [1] could be used to obtain the noiseless channel output labels from the noisy received vectors. One problem with the use of such algorithms for blind time-varying channel identification is the codebook initialization. This paper looks at two critical issues with regards to the use of VQ for channel identification. The first has to deal with the applicability of this technique in general; we present theoretical results for the conditions under which the technique may be applicable. The second aims at overcoming the codebook initialization problem by proposing a novel approach which attempts to make the first phase of the channel estimation faster than the classical codebook initialization methods. Sample simulation results are provided confirming the effectiveness of the proposed initialization technique.

A Study on Awareness Difference of Local Residents and Public Officials to River Projects (하천사업에 대한 일반인 및 공무원 인식차이 조사에 관한 연구)

  • Kang, Hyeongsik;Kim, Minseon;Cho, Sungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1161-1170
    • /
    • 2014
  • This study aims to analyze civil society consciousness to river projects, examine the current state of resident participation, and suggest development directions for river policy. For this, this study conducted a survey of 1,200 local residents and 100 public officials living and working in the river project areas. The result demonstrates the necessity of formulating river policy in a way that recognizes voices of various policy stakeholders, strengthens partnership among resident groups, and promotes a trend shift in river restoration to reflect residents' consciousness.

Variability test of 9 AGNs slected from The Seoul Natioanl University AGN Monitoring Project

  • Cho, Wanjin;Woo, Jong-Hak;Son, Donghoon;Bae, Hyun-Jin;Jeon, Yiseul;Le, Huynh Anh;Park, Songyoun;Shin, Jaejin;Kim, Minjin;Park, Daeseong;Sung, Hyun-il;Gallo, Ellena;Hodges-Kluck, Edmund;Barth, Aaron;Treu, Tommaso;Malkan, Matt;Bennert, Vardha Nicola
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.76.4-77
    • /
    • 2017
  • We have been performing a long term AGN Monitoring project, to measure the time lag of H beta line with respect to AGN optical continuum based on the reverberation mapping method. From October 2015, 69 AGNs have been monitored with BVR band photometry, using the MDM 1.3m & 2.4m and LOAO 1m telescopes, and long-slit spectroscopy, using the Lick 3m and MDM 2.4m telescopes. In this poster, we report the preliminary results of the variability study of a subsample of 9 AGNs, particularly with a few of tentative time rag measurements between B band magnitude and H beta luminosity based on the 1st year data set from February 2016 - January 2017.

  • PDF

Pre-service teachers' eliciting student thinking about a long division algorithm: Approximation of teaching via digital simulation (나눗셈 알고리즘에 대한 학생 사고를 예비교사가 도출하기 : 디지털 시뮬레이션을 통해 가르치는 것에 근접하기)

  • Kwon, Minsung;Pang, JeongSuk
    • The Mathematical Education
    • /
    • v.59 no.3
    • /
    • pp.271-294
    • /
    • 2020
  • The purpose of this study was to explore the possibility of digital simulation by which pre-service teachers (PSTs) can approximate the core teaching practice of eliciting student thinking. This study examined PSTs' questions to elicit student thinking, their use of "pause" session and peer feedback, and their reflections on doing a digital simulation. We analyzed a two-hour digital simulation session with 13 PSTs who enrolled in the elementary mathematics methods course. The results showed that PSTs shifted their general questions to more content-specific questions throughout the simulation and made a quick transition to comparing students' strategies. The number of lead PST-initiated "pause" ranged one to four times for various reasons. Their peer-coaches did not voluntarily "pause" the simulation session but actively shared what they noticed from the student work samples and suggested the next teaching moves. Without utilizing the pause session, the dramatic improvement of questioning was not observed. Even though the PSTs felt overwhelmed with interacting with the student-avatars in real-time, they highlighted the benefits of simulations, appreciated the opportunity to learn the core teaching practice, and viewed this digital simulation as "real" and "authentic" experience. The findings of this study provide implications for re-designing a practice-based teacher education program.

Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials

  • Narjabadifam, Peyman;Noori, Mohammad;Cardone, Donatello;Eradat, Rasa;Kiani, Mehrdad
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2020
  • Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS) is proposed as an engineering solution to practically exploit the well-accepted advantages of both sliding isolation and SMA-based recentering. Self-centering capability in SSS is provided by austenitic SMA cables (or wire ropes), recently attracting a lot of interest and attention in earthquake engineering and seismic isolation. The cables are arranged in various novel and conventional configurations to make SSS versatile for aseismic design and retrofit of structures. All the configurations are detailed with thorough technical drawings. It is shown that SSS is applicable without the need for Isolation Units (IUs). IUs, at the same time, are devised for industrialized applications. The proof-of-concept study is carried out through the examination of mechanical behavior in all the alternative configurations. Force-displacement relations are determined. Isolation capabilities are predicted based on the decreases in seismic demands, estimated by the increases in effective periods and equivalent damping ratios. Restoring forces normalized relative to resisting forces are assessed as the criteria for self-centering capabilities. Lengths of SMA cables required in each configuration are calculated to assess the cost and practicality. Practical implementation is realized by setting up a small-scale IU. The effectiveness of SSS under seismic actions is evaluated using an innovative computer model and compared to those of well-known Isolation Systems (ISs) protecting a reference building. Comparisons show that SSS seems to be an effective IS and suitable for earthquake protection of both structural and non-structural elements. Further research aimed at additional validation of the system are outlined.

Development of Checking System for Emergency using Behavior-based Object Detection (행동기반 사물 감지를 통한 위급상황 확인 시스템 개발)

  • Kim, MinJe;Koh, KyuHan;Jo, JaeChoon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.140-146
    • /
    • 2020
  • Since the current crime prevention systems have a standard mechanism that victims request for help by themselves or ask for help from a third party nearby, it is difficult to obtain appropriate help in situations where a prompt response is not possible. In this study, we proposed and developed an automatic rescue request model and system using Deep Learning and OpenCV. This study is based on the prerequisite that immediate and precise threat detection is essential to ensure the user's safety. We validated and verified that the system identified by more than 99% of the object's accuracy to ensure the user's safety, and it took only three seconds to complete all necessary algorithms. We plan to collect various types of threats and a large amount of data to reinforce the system's capabilities so that the system can recognize and deal with all dangerous situations, including various threats and unpredictable cases.

The Seoul National University AGN Monitoring Project (SAMP) : Photometric Light Curves

  • Son, Donghoon;Woo, Jong-Hak;Bae, Hyun-Jin;Jeon, Yiseul;Le, Huynh Anh;Park, Songyoun;Shin, Jaejin;Kim, Minjin;Park, Daeseong;Sung, Hyun-il;Gallo, Ellena;Hodges-Kluck, Edmund;Barth, Aaron;Treu, Tommaso;Malkan, Matt;Bennert, Vardha Nicola
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2017
  • We have been carrying out the long-term (3-5 years) AGN monitoring project since October 2015 to investigate the variability and measure the H beta line time lag of 69 nearby (0.06 < z < 0.47) AGNs based on the reverberation mapping method. Our targets have B band magnitudes of 14.4-18.6, luminosities of log L5100 = 45.6-48.1 erg/s, and the expected time lags of 28-597 light days. BVR band images are being taken with ~20-day cadence using MDM 1.3m, LOAO 1m and MDM 2.4m telescopes. Recently, Nickel 1m at Lick and DOAO 1m at Deokheung observatory are joined with photometric observations. Follow-up spectroscopic observations are on-going using the Lick 3m and MDM 2.4m telescopes. In this poster, we will describe our project including sample selection and the observational strategy, and present the preliminary results based on the 1st year photometry.

  • PDF

Design of Slit on Ground Plane for Improving Axial Ratio of Spiral Antenna (스파이럴 안테나의 축비 개선을 위한 접지면 위의 슬릿 설계)

  • Lee, Won-Bin;Ryu, Joo-Hyeon;Kim, Youngwook;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.251-260
    • /
    • 2017
  • This paper describes the design of a slit on ground plane to improve the axial ratio of the spiral antenna for the NLJD system application. A proposed slit shape located on the ground plane is changed to compare with the archimedean spiral slit shape of the antenna in reference [7]. In order to improve the axial ratio, the slit on the ground plane is divided by the uniform angle and the conductor of position where the current has the opposite direction each other is eliminated. Measured return loss, radiation pattern and gain show a good agreement with the computer simulation results. Even though the proposed slit structure on the ground plane was changed to compare with ones of reference [7], the characteristics such as return loss, radiation pattern and gain are not almost changed and only the axial ratio was remarkably improved at 4.88 GHz.