• Title/Summary/Keyword: California

Search Result 2,587, Processing Time 0.04 seconds

Fruit Yield and Morphological Characters of Parental Cultivars and Intervarietal Hybrids of Capsicum annuum L. (고추의 친품종 및 품종간 잡종의 과실수량과 형태적 특성)

  • 조만현
    • Journal of Life Science
    • /
    • v.6 no.4
    • /
    • pp.219-226
    • /
    • 1996
  • The fruit yield and morpholgical characters of F$_{1}$ hybrids between Capscium annuum L. 'California Wonder', four native Japanese cultivars, and three Korean F$_{1}$ cultuvars were evaluated and the results compared with parental cultivars. The F$_{1}$ hybrids obtained by crossing 'California Wonder' and native Japanese cultivars flowered 3 days earlier on average compared to parental cultivars. The yields of F$_{1}$ hydrids were higher than those of the parental cultivars, especially when one of the parents was 'California Wonder'. Also F$_{1}$ hybrid whose one parent was 'California Wonder' and 'Fushimi Amanaga' gave the highest fruit yield. The number of locules and seeds per fruit from of the 'California Wonder' hybrids whose one parent was 'California Wonder' was more than of the native Japanese cultivars. The plant height in F$_{1}$ hybrids obtained by crossing between 'California Wonder' and four native Japanese cultivars tended to be higher than that of the parental cultivars.

  • PDF

In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing

  • Ryu, Donghyeon;Loh, Kenneth J.;Ireland, Robert;Karimzada, Mohammad;Yaghmaie, Frank;Gusman, Andrea M.
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.471-486
    • /
    • 2011
  • Various types of strain sensors have been developed and widely used in the field for monitoring the mechanical deformation of structures. However, conventional strain sensors are not suited for measuring large strains associated with impact damage and local crack propagation. In addition, strain sensors are resistive-type transducers, which mean that the sensors require an external electrical or power source. In this study, a gold nanoparticle (GNP)-based polymer composite is proposed for large strain sensing. Fabrication of the composites relies on a novel and simple in situ GNP reduction technique that is performed directly within the elastomeric poly(dimethyl siloxane) (PDMS) matrix. First, the reducing and stabilizing capacities of PDMS constituents and mixtures are evaluated via visual observation, ultraviolet-visible (UV-Vis) spectroscopy, and transmission electron microscopy. The large strain sensing capacity of the GNP-PDMS thin film is then validated by correlating changes in thin film optical properties (e.g., maximum UV-Vis light absorption) with applied tensile strains. Also, the composite's strain sensing performance (e.g., sensitivity and sensing range) is also characterized with respect to gold chloride concentrations within the PDMS mixture.

Interrelationship between Paleovegetation in Southern and Central California and Northeast Pacific Atmospheric and Oceanographic Processes over the Last ~30 kyr (과거 3만년 동안 캘리포니아 남부와 중부지역의 고식생 변화와 북동태평양 대기 및 해양순환 변동과의 연관성 연구)

  • Suh, Yeon Jee
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.159-168
    • /
    • 2019
  • Understanding the interaction between climate and the water cycle is critical especially in a drought sensitive region such as California. This study explored hydrologic changes in central and southern California in relation to the glacial-interglacial climate cycles over the last 30 thousand years. To do this, we reconstructed paleovegetation using plant wax carbon isotopic compositions (${\delta}^{13}C$) preserved in marine sediment cores retrieved from the central California continental shelf (ODP Site 1018) and Santa Barbara Basin (ODP Site 893A). The results were then compared to the existing sea surface temperature (SST) and pollen records from the same cores to understand terrestrial hydrology in relation to oceanographic processes. The Last Glacial was generally dry both in central and southern California, indicated by grassland expansion, confirming the previously suggested notion that the westerly storm track that supplies the majority of the precipitation in California may not have moved southward during the glacial period. Southern California was drier than central California during the Last Glacial Maximum (LGM). This drying trend may have been associated with the weakening of the California Current and northerly winds leading to the early increase in SST in southern California and decline in both offshore and coastal upwelling. The climate was wetter during the Holocene in both regions compared to the glacial period and forest coverage increased accordingly. We attribute this wetter condition to the precipitation contribution increase from the tropics. Overall, we found a clear synchronicity between the terrestrial and marine environment which showed that the terrestrial vegetation composition in California is greatly affected by not only the global climate states but also regional oceanographic and atmospheric conditions that regulate the timing and amount of precipitation over California.

A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR

  • ADE, P.A.R.;AKIBA, Y.;ANTHONY, A.E.;ARNOLD, K.;ATLAS, M.;BARRON, D.;BOETTGER, D.;BORRILL, J.;CHAPMAN, S.;CHINONE, Y.;DOBBS, M.;ELLEFLOT, T.;ERRARD, J.;FABBIAN, G.;FENG, C.;FLANIGAN, D.;GILBERT, A.;GRAINGER, W.;HALVERSON, N.W.;HASEGAWA, M.;HATTORI, K.;HAZUMI, M.;HOLZAPFEL, W.L.;HORI, Y.;HOWARD, J.;HYLAND, P.;INOUE, Y.;JAEHNIG, G.C.;JAFFE, A.H.;KEATING, B.;KERMISH, Z.;KESKITALO, R.;KISNER, T.;JEUNE, M. LE;LEE, A.T.;LEITCH, E.M.;LINDER, E.;LUNGU, M.;MATSUDA, F.;MATSUMURA, T.;MENG, X.;MILLER, N.J.;MORII, H.;MOYERMAN, S.;MYERS, M.J.;NAVAROLI, M.;NISHINO, H.;ORLANDO, A.;PAAR, H.;PELOTON, J.;POLETTI, D.;QUEALY, E.;REBEIZ, G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.625-628
    • /
    • 2015
  • POLARBEAR is a ground-based experiment located in the Atacama desert of northern Chile. The experiment is designed to measure the Cosmic Microwave Background B-mode polarization at several arcminute resolution. The CMB B-mode polarization on degree angular scales is a unique signature of primordial gravitational waves from cosmic inflation and B-mode signal on sub-degree scales is induced by the gravitational lensing from large-scale structure. Science observations began in early 2012 with an array of 1.274 polarization sensitive antenna-couple Transition Edge Sensor (TES) bolometers at 150 GHz. We published the first CMB-only measurement of the B-mode polarization on sub-degree scales induced by gravitational lensing in December 2013 followed by the first measurement of the B-mode power spectrum on those scales in March 2014. In this proceedings, we review the physics of CMB B-modes and then describe the Polarbear experiment, observations, and recent results.