• Title/Summary/Keyword: Calibration process

Search Result 762, Processing Time 0.023 seconds

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Residual evaluation of ethyl formate in soil and crops after fumigation in green house (에틸포메이트의 하우스 농작물 훈증처리 후 토양 및 작물 중 잔류양상)

  • Hwang-Ju Jeon;Kyeongnam Kim;Chaeeun Kim;Yerin Cho;Tae-Hyung Kwon;Byung-Ho Lee;Sung-Eun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.316-324
    • /
    • 2022
  • Ethyl formate (EF) is a potent fumigant replacing methyl bromide. The use of EF is limited to a quarantine process. Appling EF to agricultural field as a safe insecticide in greenhouse give us valuable benefits including less residual concern. In this regard, residual pattern after EF fumigation in greenhouse should be undertaken. In the previous study, we have established agricultural control concentration of EF to control pests in a greenhouse. EF was fumigated at 5 g m-3 level for 2 h. The concentration of EF inside a greenhouse was analyzed to be 4.1-4.3 g m-3 at 30 min after fumigation. To prepare an analytical method for residues in cucumber crops and soil in the greenhouse, the limit of detection(LOD) of the method was 100ng g-1 and the limit of quantitation(LOQ) of this method was 300 ng g-1. R2 values of calibration curves for crops and soil were 0.991-0.997. In samples collected immediately after ventilation, EF concentration was determined to be below LOQ level. In addition, EF level was below LOQ in samples collected at 3 h after ventilation except that leaf samples of melon during the flowering period showed a level of 1,068.9 ng g-1. Taken together, these results indicate that EF used in quarantine can be applied to agricultural fields without residual issue as an effective fumigant for insect pest control.