• Title/Summary/Keyword: Calibration process

Search Result 762, Processing Time 0.029 seconds

A Head-Eye Calibration Technique Using Image Rectification (영상 교정을 이용한 헤드-아이 보정 기법)

  • Kim, Nak-Hyun;Kim, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.8
    • /
    • pp.11-23
    • /
    • 2000
  • Head-eye calibration is a process for estimating the unknown orientation and position of a camera with respect to a mobile platform, such as a robot wrist. We present a new head-eye calibration technique which can be applied for platforms with rather limited motion capability In particular, the proposed calibration technique can be applied to find the relative orientation of a camera mounted on a linear translation platform which does not have rotation capability. The algorithm find the rotation using a calibration data obtained from pure Translation of a camera along two different axes We have derived a calibration algorithm exploiting the rectification technique in such a way that the rectified images should satisfy the epipolar constraint. We present the calibration procedure for both the rotation and the translation components of a camera relative to the platform coordinates. The efficacy of the algorithm is demonstrated through simulations and real experiments.

  • PDF

Analysis of Measured Azimuth Error on Sensitivity Calibration Routine (Sensitivity Calibration 루틴 수행시 Tilt에 의한 방위각 측정 오차의 분석)

  • Woo, Kwang-Joon;Kang, Su-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The accuracy of MR sensor-based electronic compass is influenced by the temperature drift and DC offset of the MR sensor and the OP-amp, the magnetic distortion of nearby magnetic materials, and the compass tilt We design the 3-axis MR sensor and accelerometers-based electronic compass which is compensated by the set/reset pulse switching method on the temperature drift and DC offset, by the execution of hard-iron calibration routine on the magnetic distortion, and by the execution of the Euler rotational equation on the compass tilt. We qualitatively analyze the measured azimuth error on the execution of sensitivity calibration routine which is the normalization process on the different sensitivity of each MR sensor and the different gain of each op-amps. This compensation and analytic result make us design the one degree accuracy electronic compass.

Application of Normality Test and Classification of Process Capability Index (공정능력지수의 유형화 및 정규성 검정의 응용)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.551-556
    • /
    • 2011
  • This research presents an implementation strategy of Process Capability Index (PCI) according to the types of process characteristics. The types of process feature are classified as four perspectives of variation range, time period, error position, and process stage. The paper examines short-term or long-term PCI, within or between variation, position of precision or accuracy, and inclusion of measurement or calibration stage. Moreover, the study proposes normality test of unilateral PCI.

  • PDF

Augmented Feature Point Initialization Method for Vision/Lidar Aided 6-DoF Bearing-Only Inertial SLAM

  • Yun, Sukchang;Lee, Byoungjin;Kim, Yeon-Jo;Lee, Young Jae;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1846-1856
    • /
    • 2016
  • This study proposes a novel feature point initialization method in order to improve the accuracy of feature point positions by fusing a vision sensor and a lidar. The initialization is a process that determines three dimensional positions of feature points through two dimensional image data, which has a direct influence on performance of a 6-DoF bearing-only SLAM. Prior to the initialization, an extrinsic calibration method which estimates rotational and translational relationships between a vision sensor and lidar using multiple calibration tools was employed, then the feature point initialization method based on the estimated extrinsic calibration parameters was presented. In this process, in order to improve performance of the accuracy of the initialized feature points, an iterative automatic scaling parameter tuning technique was presented. The validity of the proposed feature point initialization method was verified in a 6-DoF bearing-only SLAM framework through an indoor and outdoor tests that compare estimation performance with the previous initialization method.

A Study on Visual Servoing Application for Robot OLP Compensation (로봇 OLP 보상을 위한 시각 서보잉 응용에 관한 연구)

  • 김진대;신찬배;이재원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • It is necessary to improve the exactness and adaptation of the working environment in the intelligent robot system. The vision sensor have been studied for this reason fur a long time. However, it is very difficult to perform the camera and robot calibrations because the three dimensional reconstruction and many processes are required for the real usages. This paper suggests the image based visual servoing to solve the problem of old calibration technique and supports OLP(Off-Line-Programming) path compensation. Virtual camera can be modeled from the real factors and virtual images obtained from virtual camera gives more easy perception process. Also, Initial path generated from OLP could be compensated by the pixel level acquired from the real and virtual, respectively. Consequently, the proposed visually assisted OLP teaching remove the calibration and reconstruction process in real working space. With a virtual simulation, the better performance is observed and the robot path error is calibrated by the image differences.

A 1.2 V 7-bit 1 GS/s CMOS Flash ADC with Cascaded Voting and Offset Calibration

  • Jang, Young-Chan;Bae, Jun-Hyun;Lee, Ho-Young;You, Yong-Sang;Kim, Jae-Whui;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.318-325
    • /
    • 2008
  • A 1.2 V 7-bit 1 GS/s CMOS flash ADC with an interpolation factor of 4 is implemented by using a $0.13\;{\mu}m$ CMOS process. A digital calibration of DC reference voltage is proposed for the $1^{st}$ preamp array to compensate for the input offset voltage of differrential amplifiers without disturbing the high-speed signal path. A 3-stage cascaded voting process is used in the digital encoder block to eliminate the conescutive bubbles up to seven completely, if the $2^{nd}$ preamp output is assumed to have a single bubble at most. ENOB and the power consumption were measured to be 5.88 bits and 212 mW with a 195 MHz $400\;mV_{p-p}$ sine wave input.

A Low-Voltage High-Speed CMOS Inverter-Based Digital Differential Transmitter with Impedance Matching Control and Mismatch Calibration

  • Bae, Jun-Hyun;Park, Sang-Hune;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.1
    • /
    • pp.14-21
    • /
    • 2009
  • A digital differential transmitter based on CMOS inverter worked up to 2.8 Gbps at the supply voltage of 1 V with a $0.18{\mu}m$ CMOS process. By calibrating the output impedance of the transmitter, the impedance matching between the transmitter output and the transmission line is achieved. The PVT variations of pre-driver are compensated by the calibration of the rising-edge delay and falling-edge delay of the pre-driver outputs. The chip fabricated with a $0.18{\mu}m$ CMOS process, which uses the standard supply voltage of 1.8 V, gives the highest data rate of 4Gbps at the supply voltage of 1.2 V. The proposed calibration schemes improve the eye opening with the voltage margin by 200% and the timing margin by 30%, at 2.8 Gbps and 1 V.

Averaging Current Adjustment Technique for Reducing Pixel Resistance Variation in a Bolometer-Type Uncooled Infrared Image Sensor

  • Kim, Sang-Hwan;Choi, Byoung-Soo;Lee, Jimin;Lee, Junwoo;Park, Jae-Hyoun;Lee, Kyoung-Il;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.357-361
    • /
    • 2018
  • This paper presents an averaging current adjustment technique for reducing the pixel resistance variation in a bolometer-type uncooled infrared image sensor. Each unit pixel was composed of an active pixel, a reference pixel for the averaging current adjustment technique, and a calibration circuit. The reference pixel was integrated with a polysilicon resistor using a standard complementary metal-oxide-semiconductor (CMOS) process, and the active pixel was applied from outside of the chip. The averaging current adjustment technique was designed by using the reference pixel. The entire circuit was implemented on a chip that was composed of a reference pixel array for the averaging current adjustment technique, a calibration circuit, and readout circuits. The proposed reference pixel array for the averaging current adjustment technique, calibration circuit, and readout circuit were designed and fabricated by a $0.35-{\mu}m$ standard CMOS process.

Lattice-spring-based synthetic rock mass model calibration using response surface methodology

  • Mariam, Al-E'Bayat;Taghi, Sherizadeh;Dogukan, Guner;Mostafa, Asadizadeh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.529-543
    • /
    • 2022
  • The lattice-spring-based synthetic rock mass model (LS-SRM) technique has been extensively employed in large open-pit mining and underground projects in the last decade. Since the LS-SRM requires a complex and time-consuming calibration process, a robust approach was developed using the Response Surface Methodology (RSM) to optimize the calibration procedure. For this purpose, numerical models were designed using the Box-Behnken Design technique, and numerical simulations were performed under uniaxial and triaxial stress states. The model input parameters represented the models' micro-mechanical (lattice) properties and the macro-scale properties, including uniaxial compressive strength (UCS), elastic modulus, cohesion, and friction angle constitute the output parameters of the model. The results from RSM models indicate that the lattice UCS and lattice friction angle are the most influential parameters on the macro-scale UCS of the specimen. Moreover, lattice UCS and elastic modulus mainly control macro-scale cohesion. Lattice friction angle (flat joint fiction angle) and lattice elastic modulus affect the macro-scale friction angle. Model validation was performed using physical laboratory experiment results, ranging from weak to hard rock. The results indicated that the RSM model could be employed to calibrate LS-SRM numerical models without a trial-and-error process.

An Advanced Method of Simulation and Analysis for Electromagnetic Environment on the Mobile Receiver in a Shielded Anechoic Chamber

  • Kim, Jung-Hoon;Rhee, Joong-Geun
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.229-234
    • /
    • 2006
  • This paper presents an advanced method of simulation for EM(electromagnetic) environment that affects on mobile receivers. A new calibration algorithm in the process of simulation is introduced. With a proposed calibration method, the time required for simulation is reduced and this makes it possible to simulate a near-real time EM environment in a shielded anechoic chamber. EM environment data acquisition and logging techniques with GPS for simulation were developed.