• Title/Summary/Keyword: Calibration image

Search Result 803, Processing Time 0.03 seconds

Video Image Detector Calibration Period Decision (영상검지기 교정주기 설정방안)

  • Lee, Chung-Won;Baik, Nam-Cheol;Song, Young-Hwa;Jang, Jin-Hwn
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.177-185
    • /
    • 2005
  • The accuracy of a video image detector(VID) is gradually reduced due to the various environmental and mechanical factors. But there has been no systematic research about this VID accuracy decreasing. To maintain a proper level of VID accuracy for the advanced traffic management. a regular VID calibration process needs to be introduced. Because of its cost, however. the calibration cannot be performed frequently. Therefore, the method to decide the optimal calibration interval should be studied in details. This study presents two different calibration interval decision methods. Using the invented data collection equipment. some data in the field were collected and analyzed. which were used for the adaptability checking. Although the data were limited. the result is pretty promising. More data needs to be investigated later and this study will help to maintain the data quality of the ITS center.

EMC Debugging Technique for Image Equipments (영상기기의 EMC Debugging 기술)

  • Song, Min-jong;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2022
  • For the purpose of treating health checkups and recovery of patients in a super-aged society, hospitals use devices designed with a reduction circuit of electromagnetic waves associated with the specific absorption rate of electromagnetic waves absorbed by the human body. In this paper, we proposed a filter improvement design method capable of reducing electromagnetic waves. As a result of confirming the validity of the proposed technique through simulation and experimental results, the following result values were obtained. Applying the common-mode (CM) inductor 4 mH to a calibration circuit, noise decreased in a multiband spectrum. Using the differential mode(DM) inductor 40 µH element in the primary calibration circuit, the noise decreased by 15 dB or more in the 3 MHz band spectrum. Also, applying the Admittance Capacitance (Y-Cap) 10 nF element in the secondary calibration circuit resulted in the decrease by more than 30 dB in the band spectrum before 2 MHz. After using a common-mode inductor 4 mH element in the tertiary calibration circuit, it decreased by more than 15 dB in the band spectrum after 2 MHz.

High precision 3-dimensional object measurement using slit type of laser projector (슬리트형 레이저 투광기를 이용한 고정밀 3차원 물체계측)

  • Kim, Tae-Hyo;Park, Young-Seok;Lee, Chuy-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.613-618
    • /
    • 1997
  • In this paper, we designed a line CCD camera for a flying image, which is composed of a line CCD sensor(2048 cells) and a rotating mirror, and investigated its optical properties. We also made the 3-D image from the flying image which is made of 2-D image being juxtaposed to 1-D images obtained by the camera, and performed the calibration to acquire high precision 3-D data. As a result, we obtained the 3-D measurement system using the slit type of laser projector is available to measure the high precision shape of objects.

  • PDF

Enhancing Harmful Animal Recognition At Night Through Image Calibration (이미지 보정을 통한 야간의 유해 동물 인식률 향상)

  • Ha, Yeongseo;Shim, Jaechang;Kim, Joongsoo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1311-1318
    • /
    • 2021
  • Agriculture is being damaged by harmful animals such as wild boars and water deer. It need to get permission to catch a wild boar and farmers are using a lot of methods to chase harmful animals. The methods through deep learning and image processing capture harmful animals with cameras. It is difficult to analyze harmful animals that are active at night. In this case, In this case, using deep learning by image correction can achieve a higher recognition rate.

A Study on Visual Servoing Application for Robot OLP Compensation (로봇 OLP 보상을 위한 시각 서보잉 응용에 관한 연구)

  • 김진대;신찬배;이재원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • It is necessary to improve the exactness and adaptation of the working environment in the intelligent robot system. The vision sensor have been studied for this reason fur a long time. However, it is very difficult to perform the camera and robot calibrations because the three dimensional reconstruction and many processes are required for the real usages. This paper suggests the image based visual servoing to solve the problem of old calibration technique and supports OLP(Off-Line-Programming) path compensation. Virtual camera can be modeled from the real factors and virtual images obtained from virtual camera gives more easy perception process. Also, Initial path generated from OLP could be compensated by the pixel level acquired from the real and virtual, respectively. Consequently, the proposed visually assisted OLP teaching remove the calibration and reconstruction process in real working space. With a virtual simulation, the better performance is observed and the robot path error is calibrated by the image differences.

The Fish-eye Lens Distortion Correction of Facilities Monitoring CCTV (시설물 감시용 CCTV의 초광각 렌즈 왜곡보정)

  • Kang, Jin-A;Nam, Sang-Kwan;Kim, Tae-Hoon;Oh, Yoon-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • The demand that we are monitoring security and crime of the urban facilities is increasing recently, but the using CCTV devices are expensive. In this research, we enlarge the angle of view using the Fish-eye Lens and the Photogrammetry, the efficiency of monitoring enhance. First, we carry out the calibration of the Fish-eye Lens indoors, we calculate the correction parameters, and then covert the original image-point to new image-point correcting distortion. Second, the correction program with the correction parameters can obtain the real-time correcting image. Lastly, for authorization the developed program we compare correcting-image with scanning-imge, it is showed the RMSE is 3.2pixel.

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.

Autonomous Robot Kinematic Calibration using a Laser-Vision Sensor (레이저-비전 센서를 이용한 Autonomous Robot Kinematic Calibration)

  • Jeong, Jeong-Woo;Kang, Hee-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.176-182
    • /
    • 1999
  • This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The point data collected by changing robot configuration and sensor measuring are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  • PDF

Simple Camera Calibration Using Neural Networks (신경망을 이용한 간단한 카메라교정)

  • 전정희;김충원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.867-873
    • /
    • 1999
  • Camera calibration is a procedure which calculates internal and external parameters of a camera with the Down world coordinates of the control points. Accurate camera calibration is required for achieving accurate visual measurements. In this paper, we propose a simple and flexible camera calibration using neural networks which doesn't require a special knowledge of 3D geometry and camera optics. There are some applications which are not in need of the values of the internal and external parameters. The proposed method is very useful to these applications. Also, the proposed camera calibration has advantage that resolves the ill-condition as object plane is near parallel image plane. The ill-condition is frequently met in product inspection. For little more accurate calibration, acquired image is divided into two regions according to radial distortion of lens and neural network is applied to each region. Experimental results and comparison with Tsai's algorithm prove the validity of the proposed camera calibration.

  • PDF

Analysis of Geometric Calibration Accuracy using the Results from IR Channel Nominal Radiometric Calibration (적외채널 기본 복사보정 결과를 이용한 기하보정 처리의 정확도 분석)

  • Seo, Seok-Bae;Kwon, Eun-Joo;Jin, Kyoung-Wook
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • The nominal radiometric calibration equation and additional five algorithms are applied in the infrared channel radiometric calibration for the COMS (Communication, Ocean, Meteorological Satellite) MI (Meteorological Imager). The processing end time of the radiometric calibration is directly related with the start time of geometric calibration processing since the geometric calibration processing is followed by that of the radiometric calibration. This paper describes comparison and analysis results for geometric calibration processing using two types of the radiometric calibration results, outputs from only the nominal radiometric calibration equation and outputs from the complete one (the nominal radiometric calibration equation with additional five algorithms), to propose a method with the earlier start time of the geometric calibration processing. Experimental results show that both of radiometric calibration results, from the nominal radiometric calibration equation with a fast processing speed and from the complete one with accurate radiometric values, can be used in the geometric calibration as the appropriate inputs because those processing results satisfied the requirements of geometric calibration processing accuracy. Thus the radiometric calibration results from the nominal radiometric calibration equation can be used to improve geometric calibration processing time.