• Title/Summary/Keyword: Calibration Method

Search Result 2,822, Processing Time 0.026 seconds

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

Calibration of Inertial Measurement Units Using Pendulum Motion

  • Choi, Kee-Young;Jang, Se-Ah;Kim, Yong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.234-239
    • /
    • 2010
  • The utilization of micro-electro-mechanical system (MEMS) gyros and accelerometers in low-level inertial measurement unit (IMU) influences cost effectiveness in a positive way under the condition that device error characteristics are fully calibrated. The conventional calibration process utilizes a rate table; however, this paper proposes a new method for achieving reference calibration data from the natural motion of pendulum to which the IMU undergoing calibration is attached. This concept was validated with experimental data. The pendulum angle measurements correlate extremely well with the solutions acquired from the pendulum equation of motion. The calibration data were computed using the regression method. The whole process was validated by comparing the measurement from the 6 sensor components with the measurements reconstructed using the identified calibration data.

Uncertainty Evaluation of a multi-axis Force/Moment Sensor

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.5-11
    • /
    • 2002
  • This paper describes the methods for calibration and evaluation of the relative expanded uncertainty of a multi-axis force/moment sensor. In order to use the sensor in the industry, it should be calibrated and its relative expanded uncertainty should be also evaluated. At present, the confidence of the sensor is shown with only interference error. However, it is not accurate, because the calibrated multi-axis force/moment sensor has an interference error as well as a reproducibility error of the sensor, etc. In this paper, the methods fur calibration and for evaluation of the relative expanded uncertainty of a multi-axis force/moment sensor are newly proposed. Also, a six-axis force/moment sensor is calibrated with the proposed calibration method and the relative expanded uncertainty is evaluated using the proposed uncertainty evaluation method and the calibration results. It is thought that the methods fur calibration and evaluation of the uncertainty can be usually used for calibration and evaluation of the uncertainty of the multi-axis force/moment sensor.

Development and Application of Calibration Interval Analysis Program for Measurement Quality and Reliability Improvement (측정 품질과 신뢰도 향상을 위한 교정주기 분석 프로그램의 개발 및 응용)

  • Park, Byoung-Sun;Ahn, Ung-Hwan;Cho, Joong-Jae
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.1
    • /
    • pp.54-72
    • /
    • 2006
  • In recent years, the widespread application of quality management and measurement reliability has put increasing emphasis on procedures for periodic instrument calibration. By optimizing calibration intervals, unnecessary calibrations can be minimized, thereby reducing costs. Moreover, optimizing intervals will improve compliance with regulatory directives while ensuring maximal compliance with reliability targets. In this paper, we present Calibration Interval Analysis Program developed using several establishment methodologies of calibration interval for measurement quality and reliability improvement. Also, we perform calibration interval analysis for some measurement instruments and analyse its results.

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF

Calibration Update for the Measuring Total Nitrogen Content in Rice Plant Tissue Using the Near Infrared Spectroscopy

  • Kwon, Young-Rip;Song, Young-Eun;Choi, Dong-Chil;Ryu, Jeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • The aim of the present study was to update the calibration that is used for the measurement of the total nitrogen content in the rice plant samples by using the visible and near infrared spectrum. Before the equation merge, correlation coefficient of calibration equation for nitrogen content on each rice parts was 0.945 (Leaf), 0.928 (Stem), and 0.864 (Whole plant), respectively. In the calibration models created by each part in the rice plant under the various regression method, the calibration model for the leaf was recorded with relatively high accuracy. Among of those, the calibration equation developed by Partial least squares (PLS) method was more accurate than the Multiple linear regression (MLR) method. The calibration equation was sensitive based on variety and location variations. However, we have merged and enlarged various of the samples that made not only to measure the nitrogen content more accurately, but also later sampling populations became more diversified. After merging, $R^2$ value becomes more accurate and significantly to 0.950 (L.), 0.974 (S.), 0.940 (W.). Also, after removal of outlier, R2 values increased into 0.998, 0.995, and 0.997. In view of the results so far achieved, Standard error of prediction (SEP) and SEP (C) were reduced in the stem and whole plant. Biases were reduced in the leaf, stem as well as whole plant. Slopes were high in the stem. Standard deviation reduced in the stem but $R^2$ was high in the stem and whole plant. Result was indicated that calibration equation make update, and updating robust calibration equation from merge function and multi-variate calibration.

A New Calibration Method of Atomic Force Microscopy

  • Hyunkyu Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.11-16
    • /
    • 2001
  • This paper presents an in self-calibration method to corrent the Z-directional distortion of AFM(Atomic Force Microscopy).

  • PDF

Camera calibration parameters estimation using perspective variation ratio of grid type line widths (격자형 선폭들의 투영변화비를 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Choi, Seong-Gu;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.30-32
    • /
    • 2004
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as lens distortion, focal length, scale factor, pose, orientations, and distance. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1, 2, 3, 4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. The average scale factor tends to fluctuate with small variation and makes distance error decrease. Compared with classical methods that use stereo camera or two or three orthogonal planes, the proposed method is easy to use and flexible. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming (로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정)

  • Jeong, Jun Ho;Kuk, Kum Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

Field Campaigns and test results for Absolute Radiometric Calibration (Absolute Radiometric Calibration을 위한 Field Campaign과 시험결과)

  • Lee, Seon-Gu;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.213-219
    • /
    • 2006
  • Korea Aerospace Research Institute(KARI) performed field campaigns for absolute radiometric calibration with overpassing of satellite Orbview-3 on Cal/ Val site in Goheung and Daejeon. The performed Cal/Val method is the reflectance-based of vicarious calibration methods. We collected ground-based and meteology data such as temperature, surface pressure and reflectance of targets, and radiosonde data only collected on Goheung. Data collected on each field served as input to radiative transfer codes to generate a top-of-atmosphere(TOA) radiance. Derived TOA is compared with DN of overpassing satellite Orbview-3 to calculate calibration coefficient of gain and offset. Also, This study proposed a proper method to prepare absolute radiometic calibration of KOMPSAT-2 by using experience of Field campaign.

  • PDF