• Title/Summary/Keyword: Calibration Factor(K-factor)

Search Result 278, Processing Time 0.023 seconds

A Calibration Method for Six-Accelerometer INS

  • Hung Chao-Yu;Lee Sou-Chen
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.615-623
    • /
    • 2006
  • The gyroscope free strap-down INS is composed only of accelerometers. Any gyroscope free INS navigation error is deeply affected by the accuracy of the sensor bias, scale factor, orientation and location error. However these parameters can be found by calibration. There is an important research issue about a multi-position calibration method in this paper. It provides a novel method to find the error parameters for the six-accelerometer INS. A superior simulation is shown that the multi-position calibration can find the specifications of a six-accelerometer INS in laboratory. From these parameters the six-accelerometer INS could apply in realistic navigation.

Comparison of Radiation Dose in the Measurement of MDCT Radiation Dose according to Correction of Temperatures and Pressure, and Calibration of Ionization Chamber (MDCT 선량측정에서 온도와 압력에 따른 보정과 Ionization Chamber의 Calibration 전후 선량의 비교평가)

  • Lee, Chang-Lae;Kim, Hee-Joung;Jeon, Seong-Su;Cho, Hyo-Min;Nam, So-Ra;Jung, Ji-Young;Lee, Young-Jin;Lee, Seung-Jae;Dong, Kyung-Rae
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • This study aims to conduct the comparative analysis of the radiation dose according to before and after the calibration of the ionization chamber used for measuring radiation dose in the MDCT, as well as of $CTDI_w$ according to temperature and pressure correction factors in the CT room. A comparative analysis was conducted based on the measured MDCT (GE light speed plus 4 slice, USA) data using head and body CT dosimetric phantom, and Model 2026C electrometer (RADICAL 2026C, USA) calibrated on March 21, 2007. As a result, the $CTDI_w$ value which reflected calibration factors, as well as correction factors of temperature and pressure, was found to be the range of $0.479{\sim}3.162mGy$ in effective radiation dose than the uncorrected values. Also, under the routine abdomen routine CT image acquisition conditions used in reference hospitals, patient effective dose was measured to indicate the difference of the maximum of 0.7 mSv between before and after the application of such factors. These results imply that the calibration of the ion chamber, and the correction of temperature and pressure of the CT room are crucial in measuring and calculating patient effective dose. Thus, to measure patient radiation dose accurately, the detailed information should be made available regarding not only the temperature and pressure of the CT room, but also the humidity and recombination factor, characteristics of X-ray beam quality, exposure conditions, scan region, and so forth.

  • PDF

Bayesian Model Selection in Weibull Populations

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1123-1134
    • /
    • 2007
  • This article addresses the problem of testing whether the shape parameters in k independent Weibull populations are equal. We propose a Bayesian model selection procedure for equality of the shape parameters. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian model selection procedure based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and a real example are provided.

  • PDF

The Camera Calibration Parameters Estimation using The Projection Variations of Line Widths (선폭들의 투영변화율을 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Moon, Sung-Young;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2372-2374
    • /
    • 2003
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as focal length, scale factor, pose, orientations, and distance. But, radial lens distortion is not modeled. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1,2,3,4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Evaluation of the Long-Term Stability for the Cylindrical Ionization Chambers (교정정수 변화에 의한 원통형이온함의 안정성 평가)

  • Rah Jeong-Eun;Hong Ju-Young;Kim Gwe-Ya;Lim Chun-Il;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tea-Suk
    • Radiation Oncology Journal
    • /
    • v.24 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • Purpose: To analyze the long-term stability of Farmer-type cylindrical ionization chambers by calibration factor provided from the KFDA (Korea Food Drug Administration) Materials and Methods: The cylindrical ionization chambers used in this study were the PTW 30001 (30006), 30013, 30002, 30004, 23333, the Capintec PR06C, the WE 2571, the Exradin A12 and the Wellhofer FC65G (IC70). We were analyzed that the $N_k$ and $N_{D.W}$ calibration factor for the cylindrical chambers and compared between the measured $N_{D.W}$ and calculated $N_{D.W}$ calibration factor. Results: We have observed that the long-term stability of the PTW 30013 (30006), the Wellhofer FC65G (IC70) and the NE 2571 has varied within 0.2%. The measured $N_{D,W}$ calibration factor was about 1.0% higher than the calculated $N_{D,W}$ that determined by the $N_k$ calibration factor. Conclusion: The study has evaluated that the long-term stability of the cylindrical chambers through analysis for the $N_k\;and\;N_{D,W}$ calibration factor. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

Use of Dummy Antenna to Monopole Antenna Factor (더미 안테나를 사용한 모노폴 안테나 보정계수 추출)

  • 안형배;이종악
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.932-936
    • /
    • 2002
  • This paper has been studied a calibration techniques in CISPR A for 1 m monopole antenna factor in the frequency range below 30 MHz. The equivalent capacitance substitution method uses a dummy antenna in place of the actual rod element. Dummy antenna measure frequency from 150 kHz to 30 MHz and good results factor from 150 kHz to 25 MHz compare to using 1 m monopole antenna factor. It will be use to substitute dummy antenna factor for 1 m monopole antenna factor.

Modified parity space averaging approaches for online cross-calibration of redundant sensors in nuclear reactors

  • Kassim, Moath;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.589-598
    • /
    • 2018
  • To maintain safety and reliability of reactors, redundant sensors are usually used to measure critical variables and estimate their averaged time-dependency. Nonhealthy sensors can badly influence the estimation result of the process variable. Since online condition monitoring was introduced, the online cross-calibration method has been widely used to detect any anomaly of sensor readings among the redundant group. The cross-calibration method has four main averaging techniques: simple averaging, band averaging, weighted averaging, and parity space averaging (PSA). PSA is used to weigh redundant signals based on their error bounds and their band consistency. Using the consistency weighting factor (C), PSA assigns more weight to consistent signals that have shared bands, based on how many bands they share, and gives inconsistent signals of very low weight. In this article, three approaches are introduced for improving the PSA technique: the first is to add another consistency factor, so called trend consistency (TC), to include a consideration of the preserving of any characteristic edge that reflects the behavior of equipment/component measured by the process parameter; the second approach proposes replacing the error bound/accuracy based weighting factor ($W^a$) with a weighting factor based on the Euclidean distance ($W^d$), and the third approach proposes applying $W^d$, TC, and C, all together. Cold neutron source data sets of four redundant hydrogen pressure transmitters from a research reactor were used to perform the validation and verification. Results showed that the second and third modified approaches lead to reasonable improvement of the PSA technique. All approaches implemented in this study were similar in that they have the capability to (1) identify and isolate a drifted sensor that should undergo calibration, (2) identify a faulty sensor/s due to long and continuous missing data range, and (3) identify a healthy sensor.

Practical Output Dosimetry with Undefined $N_{dw}{^{Co-60}}$ of Cylindrical Ionization Chamber for High Energy Photon Beams of Linear Accelerator ($N_{dw}{^{Co-60}}$이 정의되지 않은 원통형 이온전리함을 이용한 고에너지 광자선의 임상적 출력선량 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.114-122
    • /
    • 2012
  • For the determination of absorbed dose to water from a linear accelerator photon beams, it needs a exposure calibration factor $N_x$ or air kerma calibration factor $N_k$ of air ionization chamber. We used the exposure calibration factor $N_x$ to find the absorbed dose calibration factors of water in a reference source through the TG-21 and TRS-277 protocol. TG-21 used for determine the absorbed dose in accuracy, but it required complex calculations including the chamber dependent factors. The authors obtained the absorbed dose calibration factor $N_{dw}{^{Co-60}}$ for reduce the complex calculations with unknown $N_{dw}$ only with $N_x$ or $N_k$ calibration factor in a TM31010 (S/N 1055, 1057) ionization chambers. The results showed the uncertainty of calculated $N_{dw}$ of IC-15 which was known the $N_x$ and $N_{dw}$ is within -0.6% in TG-21, but 1.0% in TRS-277. and TM31010 was compared the $N_{dw}$ of SSDL to that of PSDL as shown the 0.4%, -2.8% uncertainty, respectively. The authors experimented with good agreement the calculated $N_{dw}$ is reliable for cross check the discrepancy of the calibration factor with unknown that of TM31010 and IC-15 chamber.

Default Bayesian testing for normal mean with known coefficient of variation

  • Kang, Sang-Gil;Kim, Dal-Ho;Le, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.297-308
    • /
    • 2010
  • This article deals with the problem of testing mean when the coefficient of variation in normal distribution is known. We propose Bayesian hypothesis testing procedures for the normal mean under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Specially, we develop intrinsic priors which give asymptotically same Bayes factor with the intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.