• Title/Summary/Keyword: Calculation time

Search Result 3,661, Processing Time 0.03 seconds

Efficient and automated method of collapse assessment

  • Qi, Yongsheng;Gu, Qiang;Li, Dong
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.561-570
    • /
    • 2012
  • Seismic collapse analysis requires efficient and automated method to perform thousands of time history analyses. The paper introduced the advantages of speed and convergence property of explicit method, provided a few techniques to accelerate speed of calculation and developed an automated procedure for collapse assessment, which combines the strong capacity of commercial explicit finite element software and the flexible, intelligent specialties of control program written in FORTRAN language aiming at collapse analysis, so that tedious and heavy work of collapse analysis based on FEMAP695 can be easily implemented and resource of calculation can be made the best use of. All the key commands of control program are provided to help analyzers and engineers to cope with collapse assessment conveniently.

Development of Artificial Intelligence Constitutive Equation Model Using Deep Learning (딥 러닝을 이용한 인공지능 구성방정식 모델의 개발)

  • Moon, H.B.;Kang, G.P.;Lee, K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2021
  • Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.

Performing linear regression with responses calculated using Monte Carlo transport codes

  • Price, Dean;Kochunas, Brendan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1902-1908
    • /
    • 2022
  • In many of the complex systems modeled in the field of nuclear engineering, it is often useful to use linear regression-based analyses to analyze relationships between model parameters and responses of interests. In cases where the response of interest is calculated by a simulation which uses Monte Carlo methods, there will be some uncertainty in the responses. Further, the reduction of this uncertainty increases the time necessary to run each calculation. This paper presents some discussion on how the Monte Carlo error in the response of interest influences the error in computed linear regression coefficients. A mathematical justification is given that shows that when performing linear regression in these scenarios, the error in regression coefficients can be largely independent of the Monte Carlo error in each individual calculation. This condition is only true if the total number of calculations are scaled to have a constant total time, or amount of work, for all calculations. An application with a simple pin cell model is used to demonstrate these observations in a practical problem.

Experiment and Electro-Thermo-Chemical Modeling on Rapid Resistive Discharge of Large-Capacity Lithium Ion Battery

  • Doh, Chil-Hoon;Ha, Yoon-Cheol;Eom, Seung-Wook;Yu, Jihyun;Choe, Seon-Hwa;Kim, Seog-Whan;Choi, Jae-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.323-338
    • /
    • 2022
  • Heat generation and temperature of a battery is usually presented by an equation of current. This means that we need to adopt time domain calculation to obtain thermal characteristics of the battery. To avoid the complicated calculations using time domain, 'state of charge (SOC)' can be used as an independent variable. A SOC based calculation method is elucidated through the comparison between the calculated results and experimental results together. Experiments are carried for rapid resistive discharge of a large-capacitive lithium secondary battery to evaluate variations of cell potential, current and temperature. Calculations are performed based on open-circuit cell potential (SOC,T), internal resistance (SOC,T) and entropy (SOC) with specific heat capacity.

Analyses of on-the-fly generation of spectral superhomogenization factors for multigroup whole core calculation employing pin-wise slowing-down solutions

  • Seungug Jae;Han Gyu Joo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1084-1096
    • /
    • 2023
  • On-the-fly(OTF) generation of Spectral Superhomogenization(SSPH) factors is analyzed in the multigroup(MG) whole core calculation employing pin-wise continuous energy(CE) slowing-down solutions. The motivation for the work is to avoid the huge computing time required for the generation of a parametrized SSPH factor library(PSSL) which is used to resolve the angular dependency of MG resonance cross sections, and also to exploit the advantage of flexible choice of a MG structure by using CE slowing-down solutions. Two pin-wise CE slowing-down methods, the equivalent Dancoff cell method and the shadowing effect correction method, are evaluated with the OTF SSPH method. The effectiveness of the OTF SSPH method is examined for various simplified and realistic core problems with various MG structures. It is demonstrated that the computing time overhead of this method is negligible whereas the solution accuracy is considerably enhanced.

A Study on the Propulsion Shaft Alignment Calculation by the Matrix Method of Three-Moment Theory (삼연모먼트정리의 매트릭스산법에 의한 박용추진축계 배치계산에 관한 연구)

  • 문덕홍;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.20-27
    • /
    • 1981
  • The alignment of propulsion shaft systems by the fair curve method has been developed over the past twenty years and in recent years its basic problems have been almost solved. At the present time, studies on introducing actual conditions are being undertaken. In a fair curve alignment, its aim is to achieve a stable shaft system which will be relatively insensitive to misalignment or the influence of external factors such as thermal variations due to the sunshine, speed change, etc. The key point of fair curve alignment is the calculations of reactions in the straight support and reaction influence numbers. The present authors have developed those calculating method by the matrix method of the three-moment theorem. The fair curve alignment is based on the analysis of propulsion shaft system which is assumed as a continous beam on multiple support points. The propeller shaft is divided into several elements. For each element, the nodal point equation is derived by the three-moment theorem. Reaction of supporting points of straight shaft and reaction influence numbers are calculated by the matrix calculation of each nodal point equation. It has been found that results of calculation for the model shaft agree well with those of experiment which had been measured by the strain gauge method. Results of calculation for the actual propulsion shafting of the steam turbine had been compared also with those of Det norske Vertas.

  • PDF

The Calculation Method with index for the Transfer Power limit to Capital Area (지수를 적용한 수도권 융통전력한계량 계산)

  • Lee, Woon-Hee;Kang, Myung-Jang;Song, Suk-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.50-52
    • /
    • 2008
  • We have limited the transfer power to capital area below a certain level which is called "The Capital Area Transfer Power Limit", and calculated on every Thursday for the application next week. This level is very important in our network operation, because if this level is not set properly, our power network can be fallen under great danger in case of a fault among the transfer power line. But the calculation procedure for the limit level is so complicated and iterative that it mace us spend much time and do much work. So, when a sudden trip of the related facility to the limit level we can't recalculate the limit level fast enough. And this can drop our network reliability below our standards, therefore our network can be dangerous. To avoid this kind of problems, we have figured out a method to calculate simply the limit level. That method uses the index related to the level. We think this method can make short of the calculation procedures for the level. This paper deals with the simplified method for the calculation of the level limit.

  • PDF

A Study on The Available Transfer Capability(ATC) with Transient Stability Constraints (과도 안정도를 고려한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Yang-Il;Jeong, Sung-Won;Gim, Jae-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.437-443
    • /
    • 2009
  • In recent years, electric power systems have been experiencing a rapid change due to the increasing electricity market. For the effective use of power system under the deregulated environment, it is important to make a fast and accurate calculation of the maximum available transfer capability (ATC) from a supply point to a demand point. In this paper, the purpose of this research is to calculate ATC fast and accurately for securing the stability of system and raising the efficiency as a result of anticipating transmission congestion according to transmission open access progressed in the future under the regulated environment of electricity market. In this paper, a study utilized a relation of the potential energy and energy function by which calculated CCT and then utilized a relation of PEBS for transient stability ATC calculation. In this paper, ATC was calculated as RPF and Energy Function method and calculation results of each method was compared. Contingence ranking method decided the weak bus by the Eigenvalues of Jacobian matrix and overloading branches by PI-index. As a result, a study proved the fast and accurate ATC calculation method considering transient stability suggested in this paper. Through the case study using New England 39 bus system, it is confirmed that the proposed method can be used for real time operation and the planning of electric market.

The Azimuth Calculation Algorithm of Pulse-Doppler Radar for GVES (지상 기동 장비용 펄스 도플러 레이더의 방위각 계산 알고리즘)

  • Park, Gyu-Churl;Ha, Jong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.947-954
    • /
    • 2010
  • The decision of threat target in the MWR(Missile Warning Radar) of GVES(Ground Vehicle Equipment System) such as MBT(Main Battle Tank) is very important. Threat decision is judged by angular rate and the accurate azimuth calculation for good threat decision is very important. The angular rate is dependent upon the direction of an approaching target. The target is classified into a threat or non-threat using a boundary condition of the angular rate. This paper presents the eighth azimuth calculation methods and compares the results.

Three-Dimensional Electric Field Calculation around the 345kV Sinmasan Substation Busbars (신마산 345kV 전력소 모선하의 3차원 불평등 전계분포 해석)

  • Myung, Sung-Ho;Lee, Byeong-Yoon;Han, Inn-Su;Park, Jong-Keun;Min, Suk-Won;Kim, Eung-Sik;Lee, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1804-1806
    • /
    • 1996
  • For the rather complicated and time-consuming three-dimensional electric field calculation in the vicinity of substations, this paper proposes a numerical calculation method based on charge simulation method(CSM). In order to represent non-uniform charge distribution on an electrode better, it is subdivided into small segments with linear charge density. Non-uniform arrangement of subdivided segments makes it possible to obtain high accuracy with a small number of variables. As for the arrangement of subdivided segments, effective formulars were derived from multiple regression analysis of many simulations. These formulars make the arrangement of segments fast and effective. The proposed method is applied to the electric field calculation around the 345kV Sinmasan Substation busbars and the distribution of calculated electric fields is compared with that of the measured electric fields.

  • PDF