DOI QR코드

DOI QR Code

Analyses of on-the-fly generation of spectral superhomogenization factors for multigroup whole core calculation employing pin-wise slowing-down solutions

  • Seungug Jae (Seoul National University, Department of Nuclear Engineering) ;
  • Han Gyu Joo (Seoul National University, Department of Nuclear Engineering)
  • Received : 2022.08.24
  • Accepted : 2022.11.10
  • Published : 2023.03.25

Abstract

On-the-fly(OTF) generation of Spectral Superhomogenization(SSPH) factors is analyzed in the multigroup(MG) whole core calculation employing pin-wise continuous energy(CE) slowing-down solutions. The motivation for the work is to avoid the huge computing time required for the generation of a parametrized SSPH factor library(PSSL) which is used to resolve the angular dependency of MG resonance cross sections, and also to exploit the advantage of flexible choice of a MG structure by using CE slowing-down solutions. Two pin-wise CE slowing-down methods, the equivalent Dancoff cell method and the shadowing effect correction method, are evaluated with the OTF SSPH method. The effectiveness of the OTF SSPH method is examined for various simplified and realistic core problems with various MG structures. It is demonstrated that the computing time overhead of this method is negligible whereas the solution accuracy is considerably enhanced.

Keywords

Acknowledgement

This work was supported by National Research Foundation (NRF) of Korea (Grant No. 2021M2D6A1048220).

References

  1. R.J. Stammler, HELIOS Methods, Studsvik Scandpower, 2003.
  2. H.G. Joo, J.Y. Cho, K.S. Kim, C.C. Lee, S.Q. Zee, Methods and performance of a three-dimensional whole-core transport code DeCART, in: Proceedings of the PHYSOR 2004: The Physics of Fuel Cycles and Advanced Nuclear Systems - Global Developments, 2004.
  3. Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374, https://doi.org/10.1016/j.anucene.2013.06.031.
  4. Y. Liu, B. Collins, B. Kochunas, W. Martin, K.S. Kim, M. Williams, Resonance self-shielding methodology in MPACT, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C), 2013.
  5. H. Park, H.G. Joo, Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors, Nucl. Eng. Technol. 49 (2017) 1287-1300, https://doi.org/10.1016/j.net.2017.07.015.
  6. S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 134-155, https://doi.org/10.1016/j.jcp.2016.11.007.
  7. K. Yamaji, H. Koike, Y. Kamiyama, K. Kirimura, S. Kosaka, Ultra-fine-group resonance treatment using equivalent Dancoff-factor cell model in lattice physics code GALAXY, J. Nucl. Sci. Technol. 55 (2018) 756-780, https://doi.org/10.1080/00223131.2018.1439416.
  8. N. Sugimura, A. Yamamoto, Resonance treatment based on ultra-fine-group spectrum calculation in the AEGIS code, J. Nucl. Sci. Technol. 44 (2007) 958-966, https://doi.org/10.1080/18811248.2007.9711335.
  9. A. Yamamoto, T. Endo, M. Tabuchi, N. Sugimura, T. Ushio, M. Mori, M. Tatsumi, Y. Ohoka, AEGIS: an advanced lattice physics code for light water reactor analyses, Nucl. Eng. Technol. 42 (2010) 500-519, https://doi.org/10.5516/NET.2010.42.5.500.
  10. D.L. Aldama, F. Leszczynski, A. Trkov, WIMS-D Library Update, Final Report of a Coordinated Research Project, IAEA, 2003.
  11. N. Choi, K.M. Kim, H.G. Joo, Optimization of neutron tracking algorithms for GPU-based continuous energy Monte Carlo calculation, Ann. Nucl. Energy 162 (2021), 108508, https://doi.org/10.1016/J.ANUCENE.2021.108508.
  12. M.J. Lee, H.G. Joo, D. Lee, K. Smith, Investigation of CMFD accelerated Monte Carlo eigenvalue calculation with simplified low dimensional multigroup formulation, in: International Conference on the Physics of Reactors (PHYSOR), 2010.
  13. H.H. Cho, H.G. Joo, H. Gyu Joo, Anisotropic scattering treatments in multigroup Monte Carlo module in nTRACER, in: Proceedings of the Reactor Physics Asia 2017 (RPHA17), 2017.
  14. K.S. Kim, S.G. Hong, The method of characteristics applied to solving slowing down equation to estimate the self-shielded resonance cross sections with an explicit geometrical effect, Ann. Nucl. Energy 38 (2011) 438-446, https://doi.org/10.1016/j.anucene.2010.09.022.
  15. A. Yamamoto, Evaluation of background cross section for heterogeneous and complicated geometry by the enhanced neutron current method, J. Nucl. Sci. Technol. 45 (2008) 1287-1292, https://doi.org/10.3327/jnst.45.1287.
  16. R.J. Stammler, M.J. Abbate, Methods of Steady-State Reactor Analysis in Nuclear Design, Academic Press, New York, NY, 1984.
  17. I. Carlvik, A method for calculating collision probabilities in general cylindrical geometry and applications to flux distributions and Dancoff factors, in: Third United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1964.
  18. S. Choi, H. Lee, S. Gi Hong, D. Lee, Resonance self-shielding methodology of new neutron transport code STREAM, J. Nucl. Sci. Technol. 52 (2015) 1133-1150, https://doi.org/10.1080/00223131.2014.993738.
  19. Y.S. Jung, C.H. Lim, H.G. Joo, Temperature dependent subgroup formulation with number density adjustment for direct whole core power reactor calculation, Ann. Nucl. Energy 96 (2016) 249-263, https://doi.org/10.1016/j.anucene.2016.06.001.
  20. H. Hong, H.G. Joo, Analysis of the APR1400 PWR initial core with the nTRACER direct whole core calculation code and the McCARD Monte Carlo code, in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2017.
  21. H. Hong, H.G. Joo, Leakage feedback method for spectral correction in pinhomogenized multi-group core calculations, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C), 2019.
  22. N. Choi, J. Kang, H.G. Joo, Massively parallel method of characteristics neutron transport calculation with anisotropic scattering treatment on GPUs, in: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, 2018.
  23. H. Park, H.G. Joo, Effective subgroup method employing macro level grid optimization for LWR applications, Ann. Nucl. Energy 129 (2019) 461-471, https://doi.org/10.1016/j.anucene.2019.02.005.
  24. S. Jae, H.G. Joo, Evaluation of a new group structure for nTRACER based on HELIOS 47 group structure and extended resonance range for 20w % uranium and MOX fuels, in: Transactions of the Korean Nuclear Society Virtual Spring Meeting, 2020.