• Title/Summary/Keyword: Calculate

Search Result 11,086, Processing Time 0.035 seconds

A Z-map Update Method for Linearly Moving tools (직선 운동하는 공구에 대한 Z-맵의 갱신 방법)

  • 맹승렬;백낙훈;신성용;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.219-232
    • /
    • 2002
  • In numerically controlled(NC) machining simulation, a Z-map has been used frequently for representing a workpiece. Since the Z-map is usually represented by a set of Z-axis aligned vectors, the machining process can be simulated through calculating the intersection points between the vectors and the surface swept by a machining tool. In this paper, we present an efficient method to calculate those intersection points when an APT-type tool moves along a linear tool path. Each of the intersection points can be expressed as the solution of a system of non-linear equations. We transform this system of equations into a single-variable equation, and calculate the candidate interval in which the unique solution exists. We prove the existence of a solution and its uniqueness in this candidate interval. Based on these characteristics, we can effectively apply numerical methods to finally calculate the solution of the non-linear equations within a given precision. The whole process of NC simulation can be achieved by updating the Z-map properly. Our method can provide more accurate results with a little more processing time, in comparison with the previous closed-form solution.

Development of the Contingency Analysis Program of Korean Energy Management System (한국형 에너지 관리시스템용 상정고장 해석프로그램 개발)

  • Cho, Yoon-Sung;Yun, Sang-Yun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.232-241
    • /
    • 2010
  • This paper describes the development of robust contingency analysis program for Korean Energy Management System. The important function of contingency analysis is to determine the bus/branch model for contingency, and to calculate the state of the power network based on the network model and topology output. In the proposed method, the bus/branch models for contingencies are determined exactly using a fast linked-list method based on the application common model database. To calculate the state of the power system included contingency, the full-decoupled powerflow approach, the partial powerflow method for contingencies and the proposed contingency screening algorithm are also used to contingency analysis. To verify the performance of the developed processor, we performed a file-based test using several structured input data and online test using the database which resides on memory. The results of these comprehensive tests showed that the developed processors can accurately calculate the power system contingency state from online data and can be applied to Korea Power Exchange system.

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.

Reliability Analysis under the Competing Risks (경쟁적 위험하에서의 신뢰성 분석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

Long Term Deflection of Flat Plate Affected by Construction Load (시공하중의 영향을 받는 플랫플레이트의 장기처짐)

  • Kang, Su-Min;Lee, Ji-Woong;Oh, Jea-Geun;Kim, Ook-Jong;Lee, Do-Bum;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.149-152
    • /
    • 2006
  • Serviceability of reinforced concrete building is affected dominantly by long term deflection of slab. And in case of reinforced concrete building with flat plate slab, severe long term deflection was expected because it has no beams which have large flexural stiffness. Therefore it is important to calculate exactly long term deflection of RC flat plate structure to assure its serviceability. However, current codes couldn't calculate exactly long term deflection of RC flat plate structure because they don't consider effects of boundary condition and construction load. By the way, recently the method to calculate long term deflection of RC flat plate structure was proposed by considering these effects. In the present study, long term deflection of RC flat plate structure was analyzed by comparing this method with recent experimental results. In conclusion, long term deflection of RC flat plate structure was affected considerably by effects of boundary condition, construction load and tensile strength of concrete. And recently proposed method considers these effects reasonably but it should be modified to reflect creep effect of RC flat plate slab reasonably.

  • PDF

Presumption Method of Proper Labor Cost While Calculating Primary Cost of Defense Industrial Manufacturing Items (방산물자 원가계산시 적정 노무비 추정방안)

  • 한현진;추성호;서성철
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • Calculation of proper expenses on acquisition and purchasing defense product is matter of survival and weighing the morality for both defense industry and the national facilities. With this reason, both parties have been a big job to estimate the resonable cost. The cost are composed of many subordinated parts such as material cost, labor cost, and so on. In the compositions of that cost, the most important part in between companies and the government throughout the whole calculating process is to define the proper labor cost. When both parties calculate imported articles or overhead expenses, they can easily calculate and confirm by documented evidences or related materials. In other hand, the labor cost, which can be seen as two absolutely different numbers and opinions can be created, depends on analyzer's point of view. These interpretation and judgment of data cannot avoid analyzer's intention. In accordance with the above matters, defining the reasonable labor cost will be the top priority in order to analyze the proper expenses. This study will provide a method of proper labor cost estimation before starting the actual manufacturing to calculate the rational labor cost.

Calculation of the coupled free, transverse vibrations of the multi-supported shaft system by transfer matrix method (전달매트릭스법에 의한 다점지지축계의 연성자유횡진동계산에 관한 연구)

  • 안시영;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.49-63
    • /
    • 1983
  • Coupled transverse shaft vibrations have become the target of great concern in high powered ships such as container ships. Due to increasing ship's dimensions and high propulsive power, resonance frequencies of the propeller shaft system tend to decrease and can appear in some cases within the operating speed range of engine. In this connection, the coupled free transverse vibrations of shaft system in two planes are theoretically investigated. This shaft system carries a number of discs and is flexibly supported by a number of bearing stiffness are considered for the calculation. Transfer matrix method is applied to calculate the shaft responses in both planes. A digital computer program is developed to calculate the shaft responses of the coupled transverse vibrations in two planes. An experimental model shaft system is made. It is composed of a disc, shafts, ball bearings thrust bearings and flexible bearing supports. The shaft system is excited by an electrical magnet, and shaft vibration responses in two planes are measured with the strain gage system. From these measurements, the natural frequencies of the shaft system in both planes are found out. The developed program is also used to calculate the shaft vibration responses of experimental model shaft system. From the results of these calculations, the natural frequencies of shaft system in two planes are derived. Theoretical predictions of model shaft natural frequencies show good agreements with its esperimental measurements.

  • PDF

An Analytical Study on a Heat Transfer Mechanism with Boiling Effect between Two Fluids in a Mini-channel (미세채널내 증발을 고려한 두 유체간 열전달현상에 대한 해석적인 연구)

  • Yoo, YoungJoon;Choi, Sangmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.114-121
    • /
    • 2013
  • In order to estimate the efficiency of an evaporative heat exchanger having mini channel, the equations to calculate heat exchanger properties, those are air temperatures and water temperatures etc, are derived from the governing equations based on the Navier-Stokes equation, even though there are several assumptions to make problem simplify. There are three heat transfer zones at the mini channel heat exchanger depending on the water condition. So, there are three governing equations and solutions to calculate the properties. As the results of this study, the equations to calculate a saturation point and a dry point are derived to evaluate an evaporative heat exchanger having micro channel. It is supposed to predict and evaluate the performance of a mini channel heat exchanger with evaporation of liquid.

Evaluation of Navigation System Performance of GPS/GLONASS/Galileo/BeiDou/QZSS System using High Performance GNSS Receiver

  • Park, Yong-Hui;Jeong, Jin-Ho;Park, Jin-Mo;Park, Sung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.333-339
    • /
    • 2022
  • The satellite navigation system was developed for the purpose of calculating the location of local users, starting with the Global Positioning System (GPS) in the 1980s. Advanced countries in the space industry are operating Global Navigation Satellite System (GNSS) that covers the entire earth, such as GPS, GLONASS, Galileo, and BeiDou, by establishing satellite navigation systems for each country. Regional Navigation Satellite Systems (RNSS) such as QZSS and NavIC are also in operation. In the early 2010s, only GPS and GLONASS could calculate location using a single system for location determination. After 2016, the EU and China also completed the establishment of GNSS such as Galileo and BeiDou. As a result, satellite navigation users can benefit from improved availability of GNSS. In addition, before Galileo and BeiDou's Full Operational Capability (FOC) declaration, they used combined navigation algorithms to calculate the user's location by adding another satellite navigation system to the GPS satellites. Recently, it may be possible to calculate a user's location for each navigation system using the resources of a single system. In this paper, we evaluated the performance of single system navigation and combined navigation solutions of GPS, GLONASS, Galileo, BeiDou and QZSS individual navigation systems using high-performance GNSS receivers.

Evaluation of Structural Integrity and Cooling Performance of 4250 kVA Power Transformer with ONAN Mode (ONAN 모드 4250kVA 변압기의 구조 건전성과 냉각 성능의 평가)

  • Yang, Chaofan;Kim, Seongik;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.48-57
    • /
    • 2021
  • The main research content of this paper is to evaluate the structural integrity and the cooling performance of 4250 kVA power transformer with ONAN(Oil Natural and Air Natural) mode. The dynamic analysis is used to verify the structural safety of the transformer by seismic loading. The transformer structure is simplified and NX software is used to build a three-dimensional model, and ANSYS commercial software is used to calculate the stress and deformation by applying corresponding load. The analysis result was evaluated whether it satisfies the design requirements according to the IEEE Std 693 standard. In terms of thermal analysis to evaluate the cooling performance, the thermal physical model is used to calculate the heat exchange between the radiator and the tank in the steady state, and the result is input into the Fluent software to calculate the internal temperature field of the transformer tank, which reduces the calculation cost of thermal fluid. Comparing the simulated hot spot temperature and top oil temperature of the transformer with the calculation results of the IEC60076 classic model, it is found that the error is only 1.9%.