• Title/Summary/Keyword: Calcium-binding Protein

Search Result 194, Processing Time 0.023 seconds

Aequorin Based Functional Assessment of the Melanin Concentrating Hormone Receptor by Intracellular Calcium Mobilization

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Melanin concentrating hormone is a neuropeptide highly expressed in the brain that regulates several physiological functions mediated by receptors in the G-protein coupled receptor family, especially plays an important role in the complex regulation of energy balance and body weight mediated by the melanin concentrating hormone receptor subtype 1 (MCH1). Compelling pharmacological evidence implicating MCH1 signaling in the regulation of food intake and energy expenditure has generated a great deal of interest by pharmaceutical companies as MCH1 antagonists may have potential therapeutic benefit in the treatment of obesity and metabolic syndrome. Although fluorescence-based calcium mobilization assay platform has been one of the most widely accepted tools for receptor research and drug discovery, fluorescence interference and shallow assay window limit their application in high throughput screening and have led to a growing interest in alternative, luminescence-based technologies. Herein, a luminescence-based functional assay system for the MCH1 receptor was developed and validated with the mitochondrial targeted aequorin. Aequorin based functional assay system for MCH1 presented excellent Z' factor (0.8983) and high signal-to-noise ratio (141.9). The nonpeptide MCH1 receptor antagonist, SNAP 7941 and GSK 803430, exhibited $IC_{50}$ values of 0.62 ${\pm}$ 0.11 and 12.29 ${\pm}$ 2.31 nM with excellent correlation coefficient. These results suggest that the aequorin based assay system for MCH1 is a strong alternative to the traditional GPCR related tools such as radioligand binding experiments and fluorescence functional determinations for the compound screening and receptor research.

Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.454-459
    • /
    • 2017
  • Tumor suppressor candidate 2 (Tusc2, also known as Fus1) regulates calcium signaling, and $Ca^{2+}$-dependent nuclear factor of activated T-cells (NFAT) and nuclear factor kappa B ($NF-{\kappa}B$) pathways, which play roles in osteoclast differentiation. However, the role of Tusc2 in osteoclasts remains unknown. Here, we report that Tusc2 positively regulates the differentiation of osteoclasts. Overexpression of Tusc2 in osteoclast precursor cells enhanced receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. In contrast, small interfering RNA-mediated knockdown of Tusc2 strongly inhibited osteoclast differentiation. In addition, Tusc2 induced the activation of RANKL-mediated $NF-{\kappa}B$ and calcium/calmodulin-dependent kinase IV (CaMKIV)/cAMP-response element (CRE)-binding protein CREB signaling cascades. Taken together, these results suggest that Tusc2 acts as a positive regulator of RANKL-mediated osteoclast differentiation.

EF-hands in CBP7 are Important in the Process of Development

  • Dahyeon Kim;Taeck Joong Jeon;Byeonggyu Park;Dong Yeop SHIN
    • Journal of Integrative Natural Science
    • /
    • v.17 no.1
    • /
    • pp.31-41
    • /
    • 2024
  • Calcium ions play an important role in development and intracellular signaling. Dictyostelium discoideum has 14 genes encoding calcium -binding proteins (CBPs), but the function of most CBPs during development has not yet been studied. In this study, we investigated the specific functions of CBP7, one of 14 CBPs, in development using RNA interference cell lines of CBP7, cell lines overexpressing CBP7, cell lines with point mutations in the EF-hand domain, and cell lines expressing fragment proteins. was intended to reveal. CBP7 consists of 169 amino acids and contains 4EF-hand domains. The CBP7-overexpressing cells showed complete loss of developmental process. These cells remained in the single-cell growth stage under development -inducing conditions, while wild-type cells formed aggregations within 6-8h of development and eventually formed fruiting bodies. The experiments using point-mutated CBP7 protein showed that all EF-hand domains of CBP7 were important for CBP7 to function during developmental process. These results suggest that CBP7 plays an important role in developmental processes across all EF-hand domains.

New insight into transglutaminase 2 and link to neurodegenerative diseases

  • Min, Boram;Chung, Kwang Chul
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.5-13
    • /
    • 2018
  • Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, Huntington's, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including $amlyoid-{\beta}$, tau, ${\alpha}-synuclein$, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.

In Vitro Differentiated Functional Cardiomyocytes from Parthenogenetic Mouse Embryonic Stem Cells (단위발생유래 생쥐 배아줄기세포로부터 체외 분화된 기능성 심근세포)

  • Shin Hyun-Ah;Kim Eun-Young;Lee Keum-Sil;Cho Hwang-Yun;Lee Won-Don;Park Se-Pill;Lim Jin-Ho
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This study was conducted to examine whether the parthenogenetic mouse embryonic stem (P-mES) cells can differentiate into functional cardiomyocytes in vitro similar to (mES) cells. p-mES04 and IVF-derived mES03 cells were cultured by suspension culture for 4 days. The formed embryoid bodies (EBs) were treated with 0.75% dimethyl-sulfoxide (DMSO) for further 4 days (4-/4+), and then plated onto gelatin coated culture dish. The appearance of contracting cardiomyocytes from the P-mES04 and mES03 cells was examined for 30 days. The highest cumulative frequency was detected at days 13 (69.83%) and 22 (61.3%), respectively. By immunocytochemistry, beating P-mES04 cells were positively stained with muscle specific anti-sarcomeric a-actinin Ab and cardiac specific anti-cardiac troponin I Ab similar to contracted mES03 cells. When the expression of cardiac muscle-specific genes was analyzed by RT-PCR, beating P-mES04 cells were expressed cardiac specific L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide $7{\beta}$, GATA binding protein 4 and atrial natriuretic factor, but not expressed skeletal muscle specific L-type calcium channel, a1S, which was similar to male adult heart cells and mES03-derived beating cardiomyocytes. The result demonstrates that the P-mES cells can be used as an alternative for the study on the characteristic analysis of in vitro cardiomyocyte differentiation from the ES cells.

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF

Distribution of Calretinin in the Superficial Layers of the Mouse Superior Colliculus: Effect of Monocular Enuclection

  • Yang, Hye-Won;Jeon-Jeon, Chang-Jin
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.389-393
    • /
    • 1998
  • We localized a calcium-binding protein, calretinin, in the superior colliculus of the mouse and studied the distribution and effect of eye enucleation on the distribution of this protein. Calretinin was localized with immunocyto-chemistry. A dense plexus of anti-calretinin-labeled fibers was found within the superficial layers. The highest density was found in the deep superficial gray layer. Monocular enucleation produced an almost complete reduction of calretinin-immunoreactive fibers in the superficial layers of the superior colliculus contralateral to the enucleation. Furthermore, many calretinin-labeled cells appeared in the contralateral superior colliculus. These newly appeared neurons had small oval or round cell bodies. The results demonstrate that calretinin identify unique neuronal sublaminar organizations in the superior colliculus of the mouse. They also suggest that the retinal projection may control in part the content of calretinin in some neurons in the superficial layers of the mouse superior colliculus.

  • PDF

Surface expression of TTYH2 is attenuated by direct interaction with β-COP

  • Ryu, Jiwon;Kim, Dong-Gyu;Lee, Young-Sun;Bae, Yeonju;Kim, Ajung;Park, Nammi;Hwang, Eun Mi;Park, Jae-Yong
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.445-450
    • /
    • 2019
  • TTYH2 is a calcium-activated, inwardly rectifying anion channel that has been shown to be related to renal cancer and colon cancer. Based on the topological prediction, TTYH2 protein has five transmembrane domains with the extracellular N-terminus and the cytoplasmic C-terminus. In the present study, we identified a vesicle transport protein, ${\beta}$-COP, as a novel specific binding partner of TTYH2 by yeast two-hybrid screening using a human brain cDNA library with the C-terminal region of TTYH2 (TTYH2-C) as a bait. Using in vitro and in vivo binding assays, we confirmed the protein-protein interactions between TTYH2 and ${\beta}$-COP. We also found that the surface expression and activity of TTYH2 were decreased by co-expression with ${\beta}$-COP in the heterologous expression system. In addition, ${\beta}$-COP associated with TTYH2 in a native condition at a human colon cancer cell line, LoVo cells. The over-expression of ${\beta}$-COP in the LoVo cells led to a dramatic decrease in the surface expression and activity of endogenous TTYH2. Collectively, these data suggested that ${\beta}$-COP plays a critical role in the trafficking of the TTYH2 channel to the plasma membrane.

Rice Proteomics: A Functional Analysis of the Rice Genome and Applications (프로테옴 해석에 의한 벼 게놈 기능해석과 응용)

  • Woo, Sun-Hee;Kim, Hong-Sig;Song, Berm-Heun;Lee, Chul-Won;Park, Young-Mok;Jong, Seung-Keun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2003
  • In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is the most prevalent technique to rapidly identify a large number of proteome analysis. However, the conventional Western blotting/sequencing technique has been used in many laboratories. As a first step to efficiently construct protein cata-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein sports are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins(i, e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 45% of total rice cDNA have been deposited in the EMBL database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that tuned out to be calreticulin, gibberellin-binding protein, which is ribulose-1.5-bisphosphate carboxylase/oxygense active in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins(http://genome.c.kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Also, the information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful be in the plant molecular breeding.

Effects of GR89696 on parvalbumin positive neurons after cerebral ischemia in the Mongolian gerbil (몽고리안 저빌에서 뇌허혈시 GR89696이 parvalbumin 발현 신경세포에 미치는 영향)

  • Kwon, Young-bae;Yang, Il-suk;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.1
    • /
    • pp.34-44
    • /
    • 1999
  • Ischemic damage in the selectively vulnerable populations of neurons is thought to be caused by an abnormal accumulation of intracellular calcium. It has been reported that the neurons, expressing specific calcium binding proteins, might effectively control intracellular calcium concentrations because of a high capacity to buffer intracellular calcium in the brain ischemic condition. It is uncertain that parvalbumin, one of the calcium binding proteins, can protect the neurons from the cerebral ischemic damage. Recently, treatment of kappa opioid agonists increased survival rate, improved neurological function, and decreased tissue damage under the cerebral ischemic condition. Many evidences indicate that these therapeutic effects might result from regulation of calcium concentration. This study was designed to analyze the changes of number in parvalbumin-positive neurons after cerebral ischemic damage according to timepoints after cerebral ischemic induction. In addition, we evaluated the effect of GR89696 (kappa opioid agonist) or naltrexone(non selective opioid antagonist) on the changes of number in parvalbumin expressing neurons under ischemic condition. Cerebral ischemia was induced by occluding the common carotid artery of experimental animals. The hippocampal areas were morphometrically analyzed at different time point after ischemic induction(1, 3, 5 days) by using immuno-histochemical technique and imaging analysis system. The number of parvalbumin-positive neurons in hippocampus was significantly reduced at 1 day after ischemia(p<0.05). Furthermore, the number of parvalbumin-immunoreactive neurons was dramatically reduced at 3 and 5 days after cerebral ischemic induction(p<0.05) as compared to 1 day group after ischemia, as well as sham control group. Significant reduction of parvalbumin positive neurons in CA1 region of hippocampus was observed at 1 day after cerebral ischemic induction. However, significant loss of MAP2 immunoreactivity was observed at 3 day after cerebral ischemia. The loss of parvalbumin-positive neurons and MAP2 immunoreactivity in CA1 region was prevented by pre-administration of GR89696 compared to that of saline-treated ischemic group. Furthermore, protective effect of GR89696 partially reversed by pre-treatment of naltrexone. These data indicate that parvalbumin-positive neurons more sensitively responded to cerebral ischemic damage than MAP2 protein. Moreover, this loss of parvalbumin-positive neurons was effectively prevented by the pretreatment of kappa opioid agonist. It was also suggested that the changes of number in parvalbumin-positive neurons could be used as the specific marker to analyze the degree of ischemic neuronal damage.

  • PDF