• Title/Summary/Keyword: Calcium sulfate

Search Result 337, Processing Time 0.027 seconds

Drying of By-product Gypsum by Microwave Heating (마이크로파 가열에 의한 부산석고(副産石膏)의 건조 특성)

  • Kim, Hyung-Seok;Chae, Young-Bae;Jung, Su-Bok;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.193-200
    • /
    • 2008
  • We tried to evaporate and dry the moisture contained Flue gas desulfurization gypsum and phosphogypsum by using the microwave directly. In the result of the heating to the Flue gas desulfurization gypsum and phosphogypsum using 2.45 GHz microwave which was created by magnetron 700 W, 1,000 W and 1,700 W, respectively. According to the increasing the microwave output intensity from 700 W to 1,700 W, the evaporate time of moisture was shortened from 10 to 3 minutes. Gypsum were changed to calcium sulfate hemihydrate. However, ${\beta}$-calcium sulfate hemi-hydrate were not changed to anhydrite.

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.

Preparation of Porous Lime Filters and SOx Removal Characteristics (석회질 다공성 필터 제조 및 SOx 제거 특성)

  • Lee Kwanghee;Park Jaikoo;Kim Hyunjung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • This study was focused on evaluating physical properties and SO$_{x}$ removal capability of porous lime filters prepared by a foaming and a gelcasting method. Porosities of lime filters ranged from 55% to 85%, and their mean pore sizes were about 95 ${\mu}{\textrm}{m}$. It was observed that porous lime filters had the continuous pore structure that most pores were inter-connected by many windows. Before SO$_{x}$ removal reaction a surface of porous lime filters was made up of calcium oxide, but after reaction calcium sulfate became a main component. The SO$_{x}$ removal efficiency and the conversion ratio of calcium oxide to calcium sulfate increased according to reaction temperature and porosity. At 100$0^{\circ}C$, SO$_{x}$ removal efficiency of filters was always over 98% regardless of the porosity. In case of the filter with the porosity of 85%, the conversion ratios of calcium oxide increased according to the reaction temperature, and they were in the range 30% to 60%. to 60%.

Utilization of Industrial Wastes as Fertilizer (산업폐기물(産業廢棄物)의 비료화(肥料化))

  • Shin, Jae-Sung;Han, Ki-Hak
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.68-79
    • /
    • 1984
  • An increased population and rapidly expanding industrial development have led to enormous amounts of various domestic and industrial wastes. The proper disposal of ever-increasing wastes is a growing global problem. Land treatment is one of the rational approaches that are environmentally safe and economically practical. It has long been practised in many sites. Recycling of industrial wastes on agricultural land can provide better possible means for maintaining environmental quality and utilizing waste-resources. Even though industrial wastes are beneficial as soil amendment and fertilizer, they have some limitation on land application because of wide variability as well as physicochemical problem in their composition. A direct application of solid and liquid wastes on land is being practised in Korea and some experimental results are presented. The direct application of fermentation waste on rice resulted in a 6 percent yield increase. Another organic residue from glutamic acid fermentation is widely used not only as a direct application as a liquid fertilizer but also for a raw material of organic compound fertilizer. These wastes are much promising as sources of plant nutrients, since they have large amounts of nutrients, especially nitrogen with few toxic metals. On the other hand, fertilizers developed from inorganic industrial wastes include calcium silicate, calcium sulfate and ammonium sulfate. The calcium silicate fertilizer simply produced from slag, by-product of iron and steel manufacturing plant is one of the most successful example of the conversion of wastes to fertilizer and slag production capacity totals to over three million MT/year. About 200,000 MT of calcium silicate fertilizer is currently applied in the paddy rice every year. Calcium sulfate, a waste from the wet phosphoric acid process is to some extent used as a filler of compound fertilizers but quite large quantites are directly applied for the reclamation of tidal flat.

  • PDF

The Suppressive Effects of Calcium Compounds against Botrytis cinerea in Paprika (파프리카 양액재배에서 발생하는 잿빛곰팡이병 방제에 대한 칼슘제제의 효과)

  • Yoon, Cheol-Soo;Yeoung, Young-Rog;Kim, Byung-Sup
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.1072-1077
    • /
    • 2010
  • Plant diseases including gray mold caused by Botrytis cinerea are often reduced when calcium compounds are used as alternative materials in paprika. However, much less information is available about the effects of calcium compounds on controlling of $B.$ $cinerea$. Seven calcium compounds such as calcium sulfate dihydrate, calcium chloride, calcium nitrate, calcium oxide, calcium hydroxide, calcium carbonate, and calcium hydride were evaluated for their effectiveness against $B.$ $cinerea$ on potato dextrose agar medium. The pH of selected calcium compounds was higher (pH 8.2-10) than that of the control (pH 6.6). Calcium carbonate, calcium oxide, calcium hydride, and calcium hydroxide among seven calcium compounds were more effectively inhibited the growth of $B.$ $cinerea$ than other calcium compounds. In the case of spraying the spore suspension on paprika applied with the selected four calcium compounds and supplied with the selected calcium supplements in a hydroponic culture system, the paprika treated with calcium compounds showed less severity of disease than those untreated plants. On the basis of our results, we propose that the suppressive effects of calcium compounds on $B.$ $cinerea$ in paprika resulted from the supply of calcium and a certain degree of salt stress.

Biologic response of local hemostatic agents used in endodontic microsurgery

  • Jang, Youngjune;Kim, Hyeon;Roh, Byoung-Duck;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.79-88
    • /
    • 2014
  • Appropriate use of local hemostatic agent is one of the important factors on the prognosis of endodontic microsurgery. However, most investigations to date focus on the hemostatic efficacy of the agents, whereas their biologic characteristics have not received enough attention. The purpose of this paper was to review the biologic response of local hemostatic agents, and to provide clinical guidelines on their use during endodontic microsurgery. Electronic database (PUBMED) was screened to search related studies from 1980 to 2013, and 8 clinical studies and 18 animal studies were identified. Among the materials used in these studies, most widely-investigated and used materials, epinephrine, ferric sulfate (FS) and calcium sulfate (CS), were thoroughly discussed. Influence of these materials on local tissue and systemic condition, such as inflammatory and foreign body reaction, local ischemia, dyspigmentation, delayed or enhanced bone and soft tissue healing, and potential cardiovascular complications were assessed. Additionally, biological property of their carrier materials, cotton pellet and absorbable collagen, were also discussed. Clinicians should be aware of the biologic properties of local hemostatic agents and their carrier materials, and should pay attention to the potential complications when using them in endodontic microsurgery.

Foliar Nutrients Status of Pinus thunbergii Influenced by Chronic Air Pollution in Yochon Industrial Complex in Korea (여천산업단지(麗川産業團地)의 만성(慢性) 대기오염(大氣汚染)에 의한 해송(海松) 엽중(葉中) 무기양료(無機養料)의 변화(變化))

  • Kim, Joon Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.335-341
    • /
    • 1999
  • To investigate the effect of sulfate deposition un forest tree nutrition, 15 forest stands of Pinus thunbergii were selected throughout Yochon industrial complex, in which is influenced by chronic air pollution. Concentrations of sulfate sulfur, nitrogen, phosphorus, potassium, calcium, and magnesium were analysed fur current and 1-year-old needles of Pinus thunbergii tree. The results obtained were as follows ; 1. Significant higher accumulation of sulfate S, computed with that of unpolluted needles, was observed at all sites, ranging front 0.11% to 0.35% in current needles, and from 0.13% to 0.32% in 1-year-old needles. 2. Ranging from 0.60% to 1.42% in current needles, and from 0.58% to 0.88% 1-year-old needles, respectively, nitrogen concentrations were significantly lower at 7 sites for current needles, and at all sites for 1-year-old needles than at unpolluted site. 3. Phosphorus and potassium levels were significantly lower at very few sites, compared with unpolluted site. 4. Calcium concentrations were significantly lower at 8 sites and 9 sites for current and 1-year old needles than at unpolluted site, ranging from 0.123% to 0.352% and from 0.201% to 0.371% in 1-year old needles, respectively. 5. Ranking from 0.077% to 0.152% in current needles, and from 0.056% to 0.105% in 1-year-old needles, magnesium concentrations were lower at only 2 sites for current needles tut at 12 sites for 1-year-old needles. 6. There were significant declines of concentrations of calcium and magnesium in current needles as sulfate accumulation increased. For 1-year-old needles, there were significant negative correlations-hips between sulfate and nitrogen, potassium, calcium, and magnesium concentration. It is concluded that deposition of sulfuric air pollutant deteriorated nutrients status, resulting in tree decline, in Pinus thunbergii forest in Yochon industrial complex.

  • PDF

Effects of Sulfuric Acid on the Synthesis of Highly Pure Calcium Borate in the Boron-Containing Brine and Bittern (붕소함유 염수와 간수로부터 고순도 calcium borate를 합성하는 반응에 황산이 미치는 영향)

  • Seo, Hyo-Jin;Kim, Myoung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.523-528
    • /
    • 2015
  • In this study, we investigated the effects of sulfuric acid on the synthesis of calcium borate in the artificial boron-containing brine (bittern) saturated with calcium hydroxide. For the study, we attempted to synthesize calcium borate under various conditions such as reaction temperature, reaction time, and cooling temperature after heating, and then to examine the recovery and purity of the calcium borate according to the presence or absence of sulfuric acid at each condition. The XRD analysis confirmed that, regardless of the presence of sulfuric acid, the calcium borate ($Ca_2B_2O_5{\cdot}H_2O$) was synthesized, while, in the presence of sulfuric acid, the calcium sulfate ($CaSO_4{\cdot}0.5H_2O$) was produced as a by-product. In all the experiments performed by varying the reaction temperature and time, the recovery and purity of the calcium borate without sulfuric acid were observed higher than those with it. The results indicated that the addition of sulfuric acid increased the solubility of the calcium hydroxide, but the calcium sulfate produced as a by-product could decrease the recovery and purity of the calcium borate by preventing the synthesis. In this study, the artificial boron-containing brine (bittern) (500 mg-B/L) was saturated with calcium hydroxide in the absence of sulfuric acid, and then the solution was heated at $80-105^{\circ}C$ for less than 10 minutes to synthesize the calcium borate. The recovery and purity of calcium borate were measured as high as 80 % and 96 %, respectively.