• Title/Summary/Keyword: Calcium signal

Search Result 135, Processing Time 0.032 seconds

Effects of 1,25 Dihydroxycholecalciferol and Ca Ionophore A23187 on Ca Transports in Bone and Bone Cells (뼈조직과 세포에서의 칼슘이동기전에 대한 1,25 dihydroxycholecaliciferol과 Ca Ionophore A23187의 영향)

  • 이선영
    • Journal of Nutrition and Health
    • /
    • v.21 no.3
    • /
    • pp.173-181
    • /
    • 1988
  • Various types of evidence suggest that some changes in cellular in cellular calcium may well signal the initiation of a chain of events leading to the physiological effects of the bone resorbing agents. The effects of 1,25-dihydorxycholecalciferol, $1.25\textrm{(OH)}_2\textrm{D}_3$, Ca ionophore A23187 and calcium antagonist, diltiazem on bone resprption and the cellular transport of Ca were investigated. Bone $^{45}\textrm{Ca}$ desaturation experiment was realized in isolated heterogenous rat bone cells after equilibrating the cells with $^{45}\textrm{Ca}$. Results of $^{45}\textrm{Ca}$ desaturation experiments were analysed by fitting the $^{45}\textrm{Ca}$ desaturation curve to a model of 2 exponential terms which indicated the presence of 2 exchangeable cellular calcium pools. $1.25\textrm{(OH)}_2\textrm{D}_3$ (0.5ng/$m\ell$) induced significantly bone resorption which was decreased by the physiological dose of diltiazeme(above 5nmol/$m\ell$) although it was ineffective alone. Ionophore A23187 (0.2$\mu\textrm{g}$/$m\ell$) decreased Ca release from bone but no additivity of effect with diltiazem(20nmol/$m\ell$) was observed. $1.25\textrm{(OH)}_2\textrm{D}_3$ (0.5ng/$10^{6}$ cells) had a moderate effect on the two kinetic phases of $^{45}\textrm{Ca}$ desaturation curve and these values were normalized when diltiazeme (20nmol/$10^{6}$ cells) was added along with $1.25\textrm{(OH)}_2\textrm{D}_3$. Ionophore($0.05\mu\textrm{g}$/$10^{6}$ cells) alone increased specifically the value of the slow turnover rate which was not affected by addition of diltiazem. The hypothesis concerning the involvement of calcium in bone resorption seems in fact to be verified in case of $1.25\textrm{(OH)}_2\textrm{D}_3$ but more unsettled for Ca inophore A23187.

  • PDF

Structural basis of Ca2+ uptake by mitochondrial calcium uniporter in mitochondria: a brief review

  • Jiho, Yoo
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.528-534
    • /
    • 2022
  • Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holo-complex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated.

Effects of the Fraction of Sambucus Williamsii, NNMBS 246, on Osteoblastic Differentiation

  • Kang, Soon-Il;Park, Jaesuh;Kwon, Il-Keun;Kim, Eun-Cheol
    • CELLMED
    • /
    • v.8 no.3
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone formation. The purpose of this study was to examine the effects of NNMBS 246 osteoblastic differentiation with associated signaling pathways. NNMBS 246 markedly increased alkaline phosphatase (ALP) activity and calcium nodule formation. Stimulation with NNMBS 246 not only increased the differentiation markers (ALP, OPN, OCN) level and transcription markers (RUNX2, Osterix) mRNA expression but also upregulated the ECM molecules and OPG mRNA expression. Treatments of NNMBS 246 downregulated MMPs (MMP-1, MMP-2, MMP-9), but RANKL mRNA expression. Furthermore, NNMBS 246 activated osteoblastic differentiation markers and formed calcium nodules in human periodontal ligament cells (hPDLCs) and cementoblast cells. NNMBS 246 induced phosphorylation of MAPKs, Akt, nuclear p65 and IkB-${\alpha}$. BMP-2/Smad and ${\beta}$-catenin signaling pathways were activated by NNMBS 246. Sirtinol (SIRT1 inhibitor) inhibited NNMBS 246-induced osteoblastic differentiation markers mRNA expression. These results suggested that NNMBS 246 has the potential to enhance osteoblastogenesis probably through the activation of BMP/Smad and ${\beta}$-catenin signal pathways, and SIRT1 plays as critical mediator in bone anabolic effect of NNMBS 246.

Endosulfan Induces CYP1A1 Expression Mediated through Aryl Hydrocarbon Receptor Signal Transduction by Protein Kinase C

  • Han, Eun Hee;Kim, Hyung Gyun;Lee, Eun Ji;Jeong, Hye Gwang
    • Toxicological Research
    • /
    • v.31 no.4
    • /
    • pp.339-345
    • /
    • 2015
  • CYP1A1 is a phase I xenobiotic-metabolizing enzyme whose expression is mainly driven by AhR. Endosulfan is an organochlorine pesticide used agriculturally for a wide range of crops. In this study, we investigated the effect of endosulfan on CYP1A1 expression and regulation. Endosulfan significantly increased CYP1A1 enzyme activity as well as mRNA and protein levels. In addition, endosulfan markedly induced XRE transcriptional activity. CH-223191, an AhR antagonist, blocked the endosulfan-induced increase in CYP1A1 mRNA and protein expression. Moreover, endosulfan did not induce CYP1A1 gene expression in AhR-deficient mutant cells. Furthermore, endosulfan enhanced the phosphorylation of calcium calmodulin (CaM)-dependent protein kinase (CaMK) and protein kinase C (PKC). In conclusion, endosulfan-induced up-regulation of CYP1A1 is associated with AhR activation, which may be mediated by PKC-dependent pathways.

Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-${\beta}$ Signaling Pathway

  • Ma, Lijuan;Kim, Seon-Ju;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • v.12 no.4
    • /
    • pp.148-154
    • /
    • 2012
  • Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-${\beta}$-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-${\beta}$ production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-${\beta}$ production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-${\beta}$ production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-${\beta}$ production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-${\beta}$ production in sepsis.

Functional Analysis of MCNA, a Gene Encoding a Catalytic Subunit of Calcineurin, in the Rice Blast Fungus Magnaporthe oryzae

  • Choi, Jin-Hee;Kim, Yang-Seon;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 2009
  • Magnaporthe oryzae, the causal agent of rice blast, forms a specialized infection structure, called an appressorium, which is crucial for penetration and infection of the host plant. Pharmacological data suggest that calcium/calmodulindependent signaling is involved in appressorium formation in this fungus. To understand the role of the calcium/calmodulin-activated protein phosphatase on appressorium formation at the molecular level, MCNA, a gene encoding the catalytic subunit of calcineurin, was functionally characterized in M. oryzae. Transformants expressing sense/antisense RNA of MCNA exhibited significant reductions in mycelial growth, conidiation, appressorium formation, and pathogenicity. cDNA of MCNA functionally complemented a calcineurin disruptant strain (cmp1::LEU2 cmp2::HIS3) of Saccharomyces cerevisiae. These data suggest that calcineurin A plays important roles in signal transduction pathways involved in the infection-related morphogenesis and pathogenicity of M. oryzae.

Expression and phosphorylation analysis of soluble proteins and membrane-localised receptor-like kinases from Arabidopsis thaliana in Escherichia coli

  • Oh, Eun-Seok;Eva, Foyjunnaher;Kim, Sang-Yun;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.315-321
    • /
    • 2018
  • Molecular and functional characterization of proteins and their levels is of great interest in understanding the mechanism of diverse cellular processes. In this study, we report on the convenient Escherichia coli-based protein expression system that allows recombinant of soluble proteins expression and cytosolic domain of membrane-localised kinases, followed by the detection of autophosphorylation activity in protein kinases. This approach is applied to regulatory proteins of Arabidopsis thaliana, including 14-3-3, calmodulin, calcium-dependent protein kinase, TERMINAL FLOWER 1(TFL1), FLOWERING LOCUS T (FT), receptor-like cytoplasmic kinase and cytoplasmic domain of leucine-rich repeat-receptor like kinase proteins. Our Western blot analysis which uses phospho-specific antibodies showed that five putative LRR-RLKs and two putative RLCKs have autophosphorylation activity in vitro on threonine and/or tyrosine residue(s), suggesting their potential role in signal transduction pathways. Our findings were also discussed in the broader context of recombinant expression and biochemical analysis of soluble and membrane-localised receptor kinases in microbial systems.

Identification of Calretinin-immunoreactive AII Amacrine Cells in the Brazilian Opossum (Monodelphis domestica) (브라질산 주머니쥐(Monodelphis domestica) 망막 내에서의 calretinin 면역반응성을 가지는 AII 무축삭세포의 동정)

  • Jeong, Se-Jin;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.271-277
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the immunoreactivity of calretinin in Brazilian opossum (Monodelphis domestica) retina. Calcium-binding protein calretinin is known to play a key role in calcium-mediated signal transduction. Methods: Experiments have been performed by standard immunocytochemical techniques on retina of the Brazilian opossum. Results: Calretinin-immunoreactivity was exhibited within the horizontal subpopulations, AII amacrine and ganglion cell subpopulations in the Brazilian opossum retina. Especially, all calretinin-immunoreactive AII amacrine cells also expressed parvalbumin. Conclusions: Similar to other mammalian retinas, calretinin-immunoreactivity was also observed within the AII amacrine cells in the Brazilian opossum retina. Thus, calretinin can be a marker of AII amacrine cells in the Brazilian opossum retina.

Vaccinium angustifolium Root Extract Suppresses FcεRI Expression in Human Basophilic KU812F Cells.

  • Shim, Sun Yup;Lee, Kyung Dong;Lee, Mina
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Vaccinium angustifolium, commonly known as the lowbush blueberry, is a rich source of flavonoids, with which various human physiological activities have been associated. The present study focuses on the investigation of the effect of the methanolic extract of V. angustifolium root extract (VAE) on high affinity immunoglobulin E receptor ($Fc{\varepsilon}RI$) ${\alpha}$ chain antibody (CRA-1)-induced allergic reaction in human basophilic KU812F cells. The total phenolic content of VAE was found to be $170{\pm}1.9mg$ gallic acid equivalents/g. Flow cytometry analysis revealed that the cell surface expression of $Fc{\varepsilon}RI$ was suppressed in a concentration-dependent manner upon culture with VAE. Reverse-transcriptase polymerase chain reaction analysis showed that the mRNA level of the $Fc{\varepsilon}RI$ ${\alpha}$ chain was reduced in a concentration-dependent manner as a result of VAE treatment. Western blot analysis revealed that the protein expression of $Fc{\varepsilon}RI$ and the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2 were concentration-dependently inhibited by VAE. We determined that VAE inhibited anti-CRA-1-induced histamine release, in addition to the elevation of intracellular calcium concentration ([$Ca^{2+}$]i), in a concentration-dependent manner. These results indicate that VAE may exert an anti-allergic effect via the inhibition of calcium influx and histamine release, which occurs as a result of the down-regulation of $Fc{\varepsilon}RI$ expression through inhibition of ERK 1/2 activation.

Calretinin-Immunoreactive Amacrine Cells and Ganglion Cells in the Greater Horseshoe Bat, Rhinolophus ferrumequinum (한국관박쥐망막에서 칼레티닌 면역반응성의 무축삭세포 및 신경절 세포에서의 관찰)

  • Jeon, Young-Ki;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.133-139
    • /
    • 2007
  • Although the physiological roles of calretinin have not been established, it may simply work as a calcium buffer or may actively work in calcium-mediated signal transduction. Calretinin plays a little role in the transport and physiological buffering of calcium in the adult photoreceptor cells, bipolar cells and horizontal cells of the human retina. We identified the calretinin-immunoreactive neurons in the inner nuclear cell layer and ganglion cell layer and the distribution pattern of the labeled neurons in the retina of a bat, Rhinolophus ferrumequinum, in this study. We observed the existence of calretinin-immunoreactive AII amacrine cell in the inner nuclear layer and ganglion cells in the ganglion cell layer of bat retina through this study. This observation must be significant along with our previous studies as we need to study for more understanding about the unsolved issue of a bat vision and the unique behavioral aspects of bat flight maneuverability.

  • PDF