DOI QR코드

DOI QR Code

Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-${\beta}$ Signaling Pathway

  • Ma, Lijuan (Department of Pathology, Hallym University College of Medicine) ;
  • Kim, Seon-Ju (Department of Pathology, Hallym University College of Medicine) ;
  • Oh, Kwon-Ik (Department of Pathology, Hallym University College of Medicine)
  • Received : 2012.07.07
  • Accepted : 2012.08.02
  • Published : 2012.08.30

Abstract

Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-${\beta}$-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-${\beta}$ production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-${\beta}$ production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-${\beta}$ production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-${\beta}$ production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-${\beta}$ production in sepsis.

Keywords

References

  1. Sims, G. P., D. C. Rowe, S. T. Rietdijk, R. Herbst, and A. J. Coyle. 2010. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28: 367-388. https://doi.org/10.1146/annurev.immunol.021908.132603
  2. Lotze, M. T. and K. J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5: 331-342. https://doi.org/10.1038/nri1594
  3. Degryse, B., T. Bonaldi, P. Scaffidi, S. Müller, M. Resnati, F. Sanvito, G. Arrigoni, and M. E. Bianchi. 2001. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J. Cell Biol. 152: 1197-1206. https://doi.org/10.1083/jcb.152.6.1197
  4. Rouhiainen, A., J. Kuja-Panula, E. Wilkman, J. Pakkanen, J. Stenfors, R. K. Tuominen, M. Lepäntalo, O. Carpén, J. Parkkinen, and H. Rauvala. 2004. Regulation of monocyte migration by amphoterin (HMGB1). Blood 104: 1174-1182. https://doi.org/10.1182/blood-2003-10-3536
  5. Sappington, P. L., R. Yang, H. Yang, K. J. Tracey, R. L. Delude, and M. P. Fink. 2002. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123:790-802. https://doi.org/10.1053/gast.2002.35391
  6. Andersson, U., H, Wang, K. Palmblad, A. C. Aveberger, O. Bloom, H. Erlandsson-Harris, A. Janson, R. Kokkola, M. Zhang, H. Yang, and K. J. Tracey. 2000. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192: 565-570. https://doi.org/10.1084/jem.192.4.565
  7. Youn, J. H., Y. J. Oh, E. S. Kim, J. E. Choi, and J. S. Shin. 2008. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J. Immunol. 180: 5067-5074. https://doi.org/10.4049/jimmunol.180.7.5067
  8. Sha, Y., J. Zmijewski, Z. Xu, and E. Abraham. 2008. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J. Immunol. 180: 2531-2537. https://doi.org/10.4049/jimmunol.180.4.2531
  9. Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, and M. E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22: 5551-5560. https://doi.org/10.1093/emboj/cdg516
  10. Kim, J. H., S. J. Kim, I. S. Lee, M. S. Lee, S. Uematsu, S. Akira, and K. I. Oh. 2009. Bacterial endotoxin induces the release of high mobility group box 1 via the IFN-beta signaling pathway. J. Immunol. 182: 2458-2466. https://doi.org/10.4049/jimmunol.0801364
  11. Zhang, X., D. Wheeler, Y. Tang, L. Guo, R. A. Shapiro, T. J. Ribar, A. R. Means, T. R. Billiar, D. C. Angus, and M. R. Rosengart. 2008. Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages. J. Immunol. 181: 5015-5023. https://doi.org/10.4049/jimmunol.181.7.5015
  12. Wang, L., I. Tassiulas, K. H. Park-Min, A. C. Reid, H. Gil-Henn, J. Schlessinger, R. Baron, J. J. Zhang, and L. B. Ivashkiv. 2008. 'Tuning' of type I interferon-induced Jak- STAT1 signaling by calcium-dependent kinases in macrophages. Nat. Immunol. 9: 186-193.
  13. Tokumitsu, H., H. Inuzuka, Y. Ishikawa, M. Ikeda, I. Saji, and R. Kobayashi. 2002. STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J. Biol. Chem. 277: 15813-15818. https://doi.org/10.1074/jbc.M201075200
  14. Karaghiosoff, M., R. Steinborn, P. Kovarik, G. Kriegshäuser, M. Baccarini, B. Donabauer, U. Reichart, T. Kolbe, C. Bogdan, T. Leanderson, D. Levy, T. Decker, and M. Müller. 2003. Central role for type I interferons and Tyk2 in lipopolysaccharide- induced endotoxin shock. Nat. Immunol. 4:471-477. https://doi.org/10.1038/ni910
  15. Weighardt, H., S. Kaiser-Moore, S. Schlautkötter, T. Rossmann-Bloeck, U. Schleicher, C. Bogdan, and B. Holzmann. 2006. Type I IFN modulates host defense and late hyperinflammation in septic peritonitis. J. Immunol. 177:5623-5630. https://doi.org/10.4049/jimmunol.177.8.5623
  16. Liu, X., M. Yao, N. Li, C. Wang, Y. Zheng, and X. Cao. 2008. CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood 112: 4961-4970. https://doi.org/10.1182/blood-2008-03-144022

Cited by

  1. Extracellular High-Mobility Group Box 1 Protein (HMGB1) as a Mediator of Persistent Pain vol.20, pp.None, 2014, https://doi.org/10.2119/molmed.2014.00176
  2. Release of Neuronal HMGB1 by Ethanol through Decreased HDAC Activity Activates Brain Neuroimmune Signaling vol.9, pp.2, 2012, https://doi.org/10.1371/journal.pone.0087915
  3. Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged e vol.353, pp.None, 2012, https://doi.org/10.1016/j.neuroscience.2017.04.008
  4. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target : Miniperspective vol.61, pp.12, 2012, https://doi.org/10.1021/acs.jmedchem.7b01136
  5. LPS Induces Active HMGB1 Release From Hepatocytes Into Exosomes Through the Coordinated Activities of TLR4 and Caspase-11/GSDMD Signaling vol.11, pp.None, 2012, https://doi.org/10.3389/fimmu.2020.00229
  6. Signaling pathways and intervention therapies in sepsis vol.6, pp.1, 2012, https://doi.org/10.1038/s41392-021-00816-9