• Title/Summary/Keyword: Calcium Silicate

Search Result 322, Processing Time 0.029 seconds

Fabrication and Evaluation of Powders Containing Calcium Silicate for Solid Self-emulsifying System of Oil (오일 성분의 고형 자가 유화 시스템을 위한 규산칼슘 함유 분말의 제조 및 평가)

  • Sung Giu, Jin
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.499-504
    • /
    • 2022
  • The objective of this study is to assess the impact of spray drying conditions on medium-chain triglyceride (MCT) loading, solubility, and release of an MCT-loaded solid self-emulsifying system in a water-insoluble oily substance. MCT-loaded solid self-emulsifying systems are prepared by spray drying with SDS and calcium silicate. The effects of inlet temperature (60, 80, or 100℃) and feed solution composition (0, 10, 50, 90, or 100% ethanol) on physicochemical properties of MCT-loaded solid self-emulsifying systems are studied. The inlet temperature significantly affects the water solubility of MCT. Moreover, the feed solution composition significantly affects water solubility, release rate, and MCT loading. The MCT-loaded solid self-emulsifying system obtained at 60℃ using 90% ethanol feed solution shows the best physicochemical properties among the synthesized products and exhibits better water solubility (4.43 ± 0.44 vs. 0 ㎍/mL) and release (94.4 ± 1.6 vs. 32.8 ± 7.4%, 60 min) than a commercial product. Furthermore, the MCT-loaded solid self-emulsifying system shows an excellent emulsion droplet size (approximately 230 nm).

Corrosion behavior of aluminum alloy in simulated nuclear accident environments regarding the chemical effects in GSI-191

  • Da Wang ;Amanda Leong;Qiufeng Yang ;Jinsuo Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4062-4071
    • /
    • 2022
  • Long-term aluminum (Al) corrosion tests were designed to investigate the condition that would generate severe Al corrosion and precipitation. Buffer agents of sodium tetraborate (NaTB), trisodium phosphate (TSP) and sodium hydroxide (NaOH) were adopted. The insulation materials, fiberglass and calcium silicate (Ca-sil), were examined to explore their effects on Al corrosion. The results show that significant precipitates were formed in both NaTB/TSP-buffered solutions at high pH. The precipitates formed in NaTB solution raise more concerns on chemical effects in GSI-191. A passivation layer formed on the surfaces of coupon in solution with the presence of insulations could effectively mitigate Al corrosion. The Fe-enriched intermetallic particles (IPs) embedded in coupon appeared to serve as seeds to readily induce precipitation via providing extra area for heterogeneous Al hydroxide precipitation. X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses indicate that the precipitates are mainly boehmite (γ-AlOOH) and no direct evidence confirms the presence of sodium aluminum silicate or calcium phosphate.

Chemical Properties of Paddy Soils and Factors Affecting Their Change in Jeonnam Province

  • Kim, Sun-Kook;Kim, Hyeon-Ji;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.492-498
    • /
    • 2015
  • The long-term changes in the soil properties are closely related to the policy direction and the national program for the soil management. In this study, chemical properties of paddy soils in Jeonnam province were investigated at four-year interval since 1999 and the factors affecting change of chemical properties were analyzed in relation to the soil management policies. Chemical fertilizers supplied to Jeonnam province reduced by 57% in 2013 as compared with 1999, and the ratio of Jeonnam province to the national fertilizer supply gradually decreased to 14.1% in 2013 from 17.6% in 1999 due to national policies to reduce use of chemical fertilizers in the 2000s. In the chemical analysis of paddy soils in Jeonnam province, pH value tended to increase gradually within the optimal range. Available phosphate and exchangeable potassium content were always higher than the optimal range and showed no significant difference since 1999. Organic matter, exchangeable calcium and available silicate content were found to be lower than average content in the whole country as well optimal range for rice cultivation in 1999, but were higher than average content in the whole country and optimal range in 2011 because of faster rate of increase in Jeonnam province than the other region since the mid-2000s. The cause of increase in organic matter, exchangeable calcium and available silicate contents is considered to be the increased use of green manure crops and by-products fertilizer as an alternatives for conventional application of chemical fertilizers and soil amendment such as silicate fertilizer for agronomic control of the disease and insect pest in rice cultivation of environmentally-friendly agriculture.

A Study on the Variation of Physical Properties on the Secondary Product of Cement by Using Crushed Stone Powder (폐석분을 사용한 시멘트 2차 제품의 물리적 특성에 관한 연구)

  • Park, Ji-Sun;Lee, Sea-Hyun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.103-111
    • /
    • 2012
  • One of the basic physical properties of the hardened cement paste, the rigidity, is deteriorated during concrete matrix forming, depending on the replacement rate of the crushed stone powder, and due to drying shrinkage. Therefore, the concrete containing crushed stone powder has been limitedly used as non-structural construction material. To improve these disadvantages, a hydrothermal reaction employing method can be considered. High-temperature and high-pressure water is involved in the hydrothermal reaction in the mixing with specific materials. The rigidity improving mechanism is related to the synthesis of calcium silicate. The calcium silicate is produced through reaction between calcium compounds and the silicic acid. Various kinds of calcium silicate can be produced depending on the CaO/$SiO_2$ mole ratio, the temperature of the hydrothermal synthesis, the pressure, and the reaction time. The product of the synthesis mechanism, tobermorite crystal, plays a pivotal role for the rigidity reinforcement. The crushed stone powder, analyzed in this study, contains 50 to 60% of $SiO_2$ and 10 to 20% $Al_2O_3$. The composite rate is appropriate to create the tobermorite crystal through formation of hardened cement matrix under the hydrothermal synthetic conditions and with the CaO in the cement. Moreover, further reinforcement was promoted using the property of material under the identical density through promoting the formation of tobermorite crystal.

  • PDF

Effect of Combined Application of Lime and Organic Matter , and of Calcium Silicate on the Growth and Cadmium Content of Chinese Cabbage (석회(石灰), 유기물(有機物)의 병용(竝用) 및 규산(硅酸)칼슘의 시용(施用)이 배추의 생육(生育) 및 카드뮴함량(含量)에 준 영향(影響))

  • Ohh, W.K.
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.1
    • /
    • pp.61-66
    • /
    • 1986
  • A small pot experiment, filled with one hundred fifty gram of Cd amended soil, was conducted in order to learn the effect of combined application of lime and organic matter and of calcium silicate on Chinese cabbage(Brassica pekinensis, Var. Seoul, Heungnong, Miho 70 days). Results obtained are as follows: 1. The application of lime without organic matter depressed the growth of cabbage at the first and second harvests, but, at the later part of third harvest the growth was facilitated so as to harvest very good yield. 2. The combined application of lime and organic matter gave not only a good growth of cabbage from the first crop, but also lowered the cadmium content of dry cabbage bellow that of cabbage harvested from the plot applied with slaked lime alone. Those effect of combined application of both materials were lasted untill the third harvest. 3. Although gave little effect on soil pH, calcium silicate raised a normal good cabbage, and depressed the cadmium content of dry cabbage, by 0.21 me per 100g, which is higher than that of slaked lime plot cabbage, but within the range of no harm to cabbage growth. 4. The control and organic matter plots resulted in a remarkable soil pH drop and high cadmium content in dry cabbage, which lead the crop to a death from the second crop. 5. A negative correlation was observed between the contents of cadmium and calcium in dry cabbage crop, but positive correlations between those of cadmium and magnesium or cadmium and potassium. These relations were grown up as the harvesting were proceeding.

  • PDF

Effect of Intracanal Medicaments on Push-out Bond Strength of Calcium Silicate-based Materials (근관내 약제가 규산칼슘 기반 재료의 압출 강도에 미치는 영향)

  • Jeong, Hyuntae;Yang, Sunmi;Kim, Seonmi;Choi, Namki;Kim, Jaehwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.4
    • /
    • pp.455-463
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of the intracanal medicaments on the push-out bond strength of the calcium silicate-based materials. Forty extracted single-root human mandibular premolars were sectioned below cementoenamel junction. Standardized root canal dimension was obtained with a parallel post drill. The specimens were randomly divided into a control group (no medicament), and experimental groups received medicaments with either CH (calcium hydroxide), DAP (double antibiotic paste; a mixture of ciprofloxacin and metronidazole), or TAP (triple antibiotic paste; a mixture of minocycline, ciprofloxacin and metronidazole). Following removal of medicaments with irrigation, roots were cut into sections with 1-mm-thickness. Thereafter, calcium silicate-based materials are applied to the specimens : (i) ProRoot MTA$^{(R)}$ and (ii) Biodentine$^{(R)}$. A push-out bond strength was measured and each specimen was examined to evaluate failure mode. Intracanal medication using CH significantly increased the bond strength to the root dentin. But there are no significant differences on the bond strength of ProRoot MTA$^{(R)}$ or Biodentine$^{(R)}$ among TAP, DAP and control groups. The dislodgement resistance of Biodentine$^{(R)}$ from root dentin was significantly higher than that of ProRoot MTA$^{(R)}$ regardless of the type of intracanal medicaments.

Evaluation of Setting Time, Solubility, and Compressive Strength of Four Calcium Silicate-Based Cements (네 가지 규산 칼슘계 시멘트의 경화시간, 용해도, 압축강도 평가)

  • Yuji Jang;Yujin Kim;Junghwan Lee;Jongsoo Kim;Joonhaeng Lee;Mi Ran Han;Jongbin Kim;Jisun Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.2
    • /
    • pp.217-228
    • /
    • 2023
  • This study aimed to compare the physical properties of 4 kinds of calcium silicate-based cements (CSCs): 2 kinds of powder-liquid mix type (RetroMTA® [RTMX] and Endocem® MTA Zr [EZMX]) and 2 kinds of premixed type (Well-RootTMPT [WRPR] and Endocem® MTA premixed [ECPR]) CSCs, respectively. Further, we assessed the setting times, solubility values, and compressive strengths of the cements. The shortest setting time was observed for EZMX (123.33 ± 5.77 seconds), followed by RTMX (146.67 ± 5.77 seconds), ECPR (260.00 ± 17.32 seconds), and WRPR (460.00 ± 17.32 seconds), respectively. The highest solubility was observed for WRPR (9.01 ± 0.55%), followed by RTMX (2.17 ± 0.07%), EZMX (0.55 ± 0.03%), and ECPR (0.17 ± 0.03%). Furthermore, the highest compressive strength was observed for ECPR (76.67 ± 25.67 Mpa), followed by WRPR (38.39 ± 7.25 Mpa), RTMX (35.07 ± 5.34 Mpa), and EZMX (4.07 ± 0.60 Mpa). In conclusion, the premixed type CSCs (WRPR and ECPR) exhibited longer setting times compared to the powder-liquid mix type CSCs (EZMX and RTMX). The solubility test showed that ECPR had the lowest solubility while WRPR had the highest solubility, with a statistically significant difference between them (p < 0.0083). Additionally, the compressive strength test showed that ECPR had the highest compressive strength, while EZMX had the lowest compressive strength, also with a statistically significant difference between them (p < 0.0083). ECPR is a promising material as it is premixed, eliminating the need for mixing time, and it has also demonstrated improved solubility and compressive strength, making it a potentially favorable option for clinical use.

Studies on Alumina Cement from Alunite (II) (Physical Properties of Alumina Cement) (명반석을 이용한 알루미나 시멘트의 제조 (II) (알루미나 시멘트의 특성))

  • 한기성;최상욱;송태웅
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.164-168
    • /
    • 1979
  • In the previous paper, it was reported that formation of desirable calcium alunimate(CA) in clinker was considerably affected by sulfur-contaminated alumina which was prone to form a disadvantageous mineral, $C_4A_3S$. In this study, however, sulphate-free alumina cement was made from sulfur-free alumina refined from alunite and corresponding materials. The major minerals in the clinker were identified by X-ray diffraction patterns as calcium aluminate (CA), calcium dialuminate $(CA_2)$ and dicalcium alumino silicate $(C_2AS)$. The formation of CA was more effective with decreasing contents of silica to 2 per cent or less and sulfur in the refined alumina. Physical properties of prepared alumina cement such as setting time, stability and compressive strength were measured. The values were similar to those of commercial alumina cements.

  • PDF

Physicochemical Study of Thermal Treated Serpentine for Carbon Dioxide Sequestration (이산화탄소 포획을 위한 serpentine의 열처리와 물리화학적 특성 변화 연구)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.301-308
    • /
    • 2007
  • Silicate mineral serpentine with magnesium and calcium was selected as a mineral carbonation mediators for carbon dioxide storage. Serpentine has various metallic elements as an oxides form of magnesium, iron, calcium, aluminium etc. Magnesium and calcium could be carbonation salt preferentially than other metal component within serpentine. Systemic thermochemical treatment for serpentine could change physicochemical properties like a surface area and pore dimensions. Due to the rapid chemical reaction rate depended on dimensional values, carbonation formation could determined by surface property change of thermochemical treated serpentine.

Studies on the Growth and Nutrient Uptaking of Flag Leaf and Chaff of Rice Plant in Cold Injury Location II, Influence of Different Nitrogen and Silicate Application on the Nutrient Uptaking of Chaff in Rice Plant (냉해지대의 수도생육과 임, 불임인각의 양분흡수에 관한 연구 제3보 질소와 규산시용량의 차이가 인각의 양분흡수에 미치는 영향)

  • Kim, Y.J.;Choi, S.I.;Ra, J.S.;Lee, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 1983
  • This experiment was conducted to study about influenced inorganic element contents of flag leaf and chaff with different nitrogen and silicate application in Jinan (sea level 303m). The recommended rate of fertilizer application above N 15kg/10a was poor for dry production increment in cold in July elevation and was demanded increment of silicate. In the elevation of cold in July high rates of nitrogen application produced more incomplete grain and a reduced cold tolerance. These effects were due to over-content of soluble nitrogen within flag leaf and disturbance of uptaking potassium and silicate. On the other hand, the application of silicate could increase yield by promoting resistance to cold- damage. The application of increasing level of nitrogen resulted in increasing the contents of total nitrogen and phosphate in both sterile and fertile glumes. The contents of potassium and calcium were the highest at the level of nitrogen 10 - 15kg/10a, but magnessium was rather high at low nitrogen levels. It is interesting that at any level of nitrogen, over 6% higher silicate contents were noted in the fertile chaff than in the sterile chaff. Application of increasing level of silicate fertilizer decreased total nitrogen contents, but increased the contents of phosphate, potassium. and silicate in the chaff. Increasing rate of silicate content by increasing silicate addition was remarkably higher in the fertile chaff than in the sterile chaff.

  • PDF